• Title/Summary/Keyword: hilE

Search Result 14, Processing Time 0.032 seconds

Salmonella Invasion Gene Regulation: A Story of Environmental Awareness

  • Jones Bradley D.
    • Journal of Microbiology
    • /
    • v.43 no.spc1
    • /
    • pp.110-117
    • /
    • 2005
  • Salmonella enterica serovar Typhimurium causes human gastroenteritis and a systemic typhoid-like infection in mice. A critical virulence determinant of Salmonella is the ability to invade mammalian cells. The expression of genes required for invasion is tightly regulated by environmental conditions and a variety of regulatory genes. The hilA regulator encodes an OmpR/ToxR family transcriptional regulator that activates the expression of invasion genes in response to both environmental and genetic regulatory factors. Work from several laboratories has highlighted that regulation of hilA expression is a key point for controlling expression of the invasive phenotype. A number of positive regulators of hilA expression have been identified including csrAB, sirA/barA, pstS, hilC/sirC/sprA, fis, and hilD. HilD, an AraC/XylS type transcriptional regulator, is of particular importance as a mutation in hilD results in a 14-fold decrease in chromosomal hilA::Tn5lacZY-080 expression and a 53-fold decrease in invasion of HEp-2 cells. It is believed that HilD directly regulates hilA expression as it has been shown to bind to hilA promoter sequences. In addition, our research group, and others, have identified genes (hilE, hha, pag, and lon) that negatively affect hilA transcription. HilE appears to be an important Salmonella-specific regulator that plays a critical role in inactivating hilA expression. Recent work in our lab has been directed at understanding how environmental signals that affect hilA expression may be processed through a hilE pathway to modulate expression of hilA and the invasive phenotype. The current understanding of this complex regulatory system is reviewed.

Emission Properties of OLED Devices with Various Hole Injection Materials (정공주입층에 따른 OLED 소자의 발광 특성)

  • Lee, Bong-Sub;Gao, Xin-Wei;Park, Jong-Yek;Baek, Yong-Gu;Yang, Jae-Woong;Paek, Kyeong-Kap;Ju, Sung-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.6
    • /
    • pp.562-568
    • /
    • 2008
  • In this paper, the hole injection layer(HIL) materials have been synthesized and analyzed. Their HOMO levels are $4.93{\sim}5.22\;eV$, and their energy band gaps are $2.74{\sim}3.19\;eV$. Their glass transition temperatures($T_g$) are all above $114^{\circ}C$, which implies that they are highly thermal-stable. The green OLED devices with a structure of ITO(150 nm)/NEW_HIL(50 nm)/NPB(30 nm)/$Alq_3$(50 nm)/Al:Li(100 nm) were fabricated and tested, incorporating these newly synthesized HIL materials. According to the test results of OLED devices, the I-V-L performances of these devices increase in the following sequence: ELM307 > ELM200 > ELM321 > ELM327 > ELM325. In addition, the OLED device with ELM307 as a HIL has the highest brightness and efficiency at the same driving voltage. These experimental results have shown that ELM307 can be used as one of the most promising candidates for HIL materials.

Analysis of Salmonella Pathogenicity Island 1 Expression in Response to the Changes of Osmolarity

  • LIM, SANG-YONG;YONG, KYEONG-HWA;RYU, SANG-RYEOL
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.175-182
    • /
    • 2005
  • Abstract Salmonella pathogenicity island 1 (SPI1) gene expression is regulated by many environmental signals such as oxygen, osmolarity, and pH. Here, we examined changes in the expression level of various regulatory proteins encoded within SPI1 in response to three different concentrations of NaCl, using primer extension analysis. Transcription of all the regulatory genes tested was activated most when Salmonella were grown in Luria Broth (LB) containing 0.17 M NaCl. The expression of hilA, invF, and hilD was decreased in the presence of 0.47 M NaCl or in the absence of NaCl, while hilC expression was almost constant regardless of the NaCl concentration when Salmonella were grown to exponential phase under low-oxygen condition. The reduced expression of hilA, invF, and hilD resulted in lower invasion of hilC mutant to the cultured animal cells when the mutant was grown in the presence of 0.47 M NaCl or in the absence of NaCl prior to infection. Among the proteins secreted via the SPI1-type III secretion system (TTSS), the level of sopE2 expression was not influenced by medium osmolarity. Various effects of osmolarity on virulence gene regulation observed in this study is one example of multiple regulatory pathways used by Salmonella to cause infection.

Effect of insect protein and protease on growth performance, blood profiles, fecal microflora and gas emission in growing pig

  • Young Bin, Go;Ji Hwan, Lee;Byong Kon, Lee;Han Jin, Oh;Yong Ju, Kim;Jae Woo, An;Se Yeon, Chang;Dong Cheol, Song;Hyun Ah, Cho;Hae Ryoung, Park;Jin Ho, Cho;Ji Yeon, Chun
    • Journal of Animal Science and Technology
    • /
    • v.64 no.6
    • /
    • pp.1063-1076
    • /
    • 2022
  • Two experiments were conducted to determine the effect of Hermetia illucens larvae (HIL) as protein and protease on growth performance, blood profiles, fecal microflora, and gas emission in growing pig. In experiment 1, the seventy-two crossbred growing pigs ([Landrace × Yorkshire] × Duroc) with an initial body weight (BW) of 27.98 ± 2.95 kg were randomly allotted to one of four dietary treatments (3 pigs per pen and 6 replicates pen per treatments). The experimental design was a 2 × 2 factorial arrangement of treatments evaluating two diets (Poultry offal diets and HIL diets) without or with supplementing protease. The poultry offal in basal diet has been replaced by HIL. In experiment 2, the four crossbred growing pigs ([Landrace × Yorkshire] × Duroc) with an initial BW of 28.2 ± 0.1 kg were individually accepted in stainless steel metabolism cages. The dietary treatments included: 1) PO- (PO-; poultry offal diet), 2) PO+ (PO- + 0.05% protease), 3) HIL- (3% PO of PO- diet was replacement 3% HIL), 4) HIL+ (HIL- + 0.05% protease). In experiment 1, From weeks 0 to 2, average daily gain (ADG) and feed efficiency (G:F) were significantly increased in the PO diet group compared with the HIL group. From weeks 2 to 4, ADG and G:F were higher for protease group than for non-protease group. At weeks 2 and 4, the PO diet group had lower blood urea nitrogen (BUN) levels than HIL diet group. In experiment 2, crude protein (CP) and nitrogen (N) retention were decreased by HIL diet at weeks 2 and 4. The fecal microflora and gas emission were not affected by HIL and protease. The HIL diet showed lower CP digestibility than PO diet and total essential amino acids digestibility tended to higher in PO diet than HIL diet. In summary, the present study revealed that replacement of the PO protein with the HIL protein and the additive of protease in growing pig diets during the overall experimental period had no negative effect.

Neuropeptide Regulation of Signaling and Behavior in the BNST

  • Kash, Thomas L.;Pleil, Kristen E.;Marcinkiewcz, Catherine A.;Lowery-Gionta, Emily G.;Crowley, Nicole;Mazzone, Christopher;Sugam, Jonathan;Hardaway, J. Andrew;McElligott, Zoe A.
    • Molecules and Cells
    • /
    • v.38 no.1
    • /
    • pp.1-13
    • /
    • 2015
  • Recent technical developments have transformed how neuroscientists can probe brain function. What was once thought to be difficult and perhaps impossible, stimulating a single set of long range inputs among many, is now relatively straight-forward using optogenetic approaches. This has provided an avalanche of data demonstrating causal roles for circuits in a variety of behaviors. However, despite the critical role that neuropeptide signaling plays in the regulation of behavior and physiology of the brain, there have been remarkably few studies demonstrating how peptide release is causally linked to behaviors. This is likely due to both the different time scale by which peptides act on and the modulatory nature of their actions. For example, while glutamate release can effectively transmit information between synapses in milliseconds, peptide release is potentially slower [See the excellent review by Van Den Pol on the time scales and mechanisms of release (van den Pol, 2012)] and it can only tune the existing signals via modulation. And while there have been some studies exploring mechanisms of release, it is still not as clearly known what is required for efficient peptide release. Furthermore, this analysis could be complicated by the fact that there are multiple peptides released, some of which may act in contrast. Despite these limitations, there are a number of groups making progress in this area. The goal of this review is to explore the role of peptide signaling in one specific structure, the bed nucleus of the stria terminalis, that has proven to be a fertile ground for peptide action.

Real-Time HIL Simulation of the Discontinuous Conduction Mode in Voltage Source PWM Power Converters

  • Futo, Andras;Kokenyesi, Tamas;Varjasi, Istvan;Suto, Zoltan;Vajk, Istvan;Balogh, Attila;Balazs, Gergely Gyorgy
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1535-1544
    • /
    • 2017
  • Advances in FPGA technology have enabled fast real-time simulation of power converters, filters and loads. FPGA based HIL (Hardware-In-the-Loop) simulators have revolutionized control hardware and software development for power electronics. Common time step sizes in the order of 100ns are sufficient for simulating switching frequency current and voltage ripples. In order to keep the time step as small as possible, ideal switching function models are often used to simulate the phase legs. This often produces inferior results when simulating the discontinuous conduction mode (DCM) and disabled operational states. Therefore, the corresponding measurement and protection units cannot be tested properly. This paper describes a new solution for this problem utilizing a discrete-time PI controller. The PI controller simulates the proper DC and low frequency AC components of the phase leg voltage during disabled operation. It also retains the advantage of fast real-time execution of switch-based models when an accurate simulation of high frequency junction capacitor oscillations is not necessary.

Comparative study on the antimicrobial and antiinflammatory activity of commercially available toothpastes (수종의 상용 세치제들의 향균 및 향염효과 비교연구)

  • Rhyu, In-Chul
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.2
    • /
    • pp.557-566
    • /
    • 1996
  • It is known that some natural extracts from plants have a various range of antimicrobial and antiinflammatory activity. There are lots of clinical trials to develop toothpastes containing natural extracts for prevention of dental caries and gingival inflammation. The purpose of this study was to evaluate antimicrobial and antiinflammatory activity of magnolol containing toothpastes and other commercial toothpastes. Eleven kinds oftoothpastes were used. They include magnolol, sanguinarine, Myrrha, Mori radicis cortex,Cimicifugae rhizoma, sodium fluoride, aminocaprolactic acid etc. Six strains of bacteria were used for this test, ego Porphylomonas gingivalis, Prevotellain-termedia, Actinobacillus actinomy cetemcomitans, Streptococcus mutans, Stretococcus sanguis, and Actinomyces species. Antimicrobial activity was determined by an agar dillution method and a broth microdillution method. Antiinflammatory activity was assessed by the inhibition of $PGE_2$ production from gingival fibroblast with the addition of rHIL-1 and centrifuged solution of toothpastes. Control group was only rHIL-1 additive sample. $PGE_2$ enzyme immunoassay systemfAmersham, In. Buckinghamshire, U.K). $PGE_2$ level was measured by ELISA reader with 450 nm, The results from the study revealed that toothpastes containing natural extracts generally had high antimicrobial and antiinflammatory activity. Especially magnolol containing toothpaste showed higher antimicrobial activity than other toothpastes, and sanguinarine containing toothpaste showed particularly high antimicrobial activity in A. actinomicetemcomitans and A. viscosus. In some degree all toothpastes inhibited $PGE_2$ production, but magnolol containing toothpaste was potent inhibitor of $PGE_2$. Sodium chloride containing toothpaste had also effective result. The results suggested that toothpastes containing natural extracts were promising in plaque control and prevention of dental caries and gingivitis.

  • PDF

1.5' Full Color ECR(Enhanced Contrast Ratio) OLED Using Black Layer Technology

  • Kang, Seong-Jong;E, Jung-Yoon;Roh, Byeong-Gyu;Lee, Jong-Ho;Kim, Woo-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1394-1397
    • /
    • 2005
  • Hyundai LCD Inc. and LUXELL Technologies Inc. have jointly developed a 1.5" passive matrix full color OLED display ($132{\times}RGB{\times}96$, 111ppi) with characteristics of enhanced contrast ratio using black layer technology. This prototype ECR OLED was fabricated with the structure of ITO/HIL/HTL/RGB EML/HBL/ETL/LiF/Black Layer/Cathode and showed significant improvement of contrast ratio comparing with that of non-filtered OLED as well as compatible with circular polarizer OLED

  • PDF

Luminacne Efficiency Improvement of OLED through Optical Interference Effect (광학적 간섭효과에 따른 OLED의 발광효율 개선)

  • Lim, J.S.;Lee, B.J.;Shin, P.K.;Kim, S.J.;Cheong, M.Y.;Lee, E.H.;Kim, D.H.;Jin, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1275-1276
    • /
    • 2008
  • In this study, a micro-cavity organic light-emittingdevice (OLED) with semi-transparent-Ag/AgO hole injecting layer (HIL) was fabricated and their performance was investigated. For the fabrication of OLEDs N,N-diphenyl-N,N-(3-methyphenyl)-1,1-biphenyl-4-4-diamine (TPD), known as a hole transporting material and tris (8-hydroxyquinolinato)-aluminum ($Alq_3$) as both electron-transporting layer (ETL) and emission layer (EML) were deposited using thermal evaporation technique. And Al layer as cathode was then deposited using thermal evaporation technique. Effects of the semi-transparent-Ag/AgO layers on the resulting OLED performance were investigated.

  • PDF

The Effect of Multilayer Passivation Film on Life Time Characteristics of OLED Device (OLED소자의 수명에 미치는 다층 보호막의 영향)

  • Ju, Sung-Hoo;Yang, Jae-Woong
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.1
    • /
    • pp.20-24
    • /
    • 2012
  • Multilayer passivation film on OLED with organic/inorganic hybrid structure as to diminish the thermal stress and expansion was researched to protect device from the direct damage of $O_2$ and $H_2O$ and improve life time characteristics. Red OLED doped with 1 vol.% Rubrene in $Alq_3$ was used as a basic device. The films consist of ITO(150 nm)/ELM200_HIL(50 nm)/ELM002_HTL(30 nm)/$Alq_3$: 1 vol.% Rubrene(30 nm)/$Alq_3$(30 nm) and LiF(0.7 nm)/Al(100 nm) which were formed in that order. Using LiF/$SiN_x$ as a buffer layer was determined because it significantly improved life time characteristics without suffering damage in the process of forming passivation film. Multilayer passivation film on buffer layer didn't produce much change in current efficiency, while the half life time at 1,000 $cd/m^2$ of OLED/LiF/$SiN_x$/E1/$SiN_x$ was 710 hours which showed about 1.5 times longer than OLED/LiF/$SiN_x$/E1 with 498 hours. futhermore, OLED/LiF/$SiN_x$/E1/$SiN_x$/E1/$SiN_x$ with 1301 hours showed about twice than OLED/LiF/$SiN_x$/E1/$SiN_x$ which demonstrated that superior characteristics of life time was obtained in multilayer passivation film. Through the above result, it was suggested using LiF/$SiN_x$ as a buffer layer could reduce the damage from the difference of thermal expansion coefficient in OLED with protective films, and epoxy layer in multilayer passivation film could function like a buffer between $SiN_x$ inorganic layers with relatively large thermal stress.