• Title/Summary/Keyword: hijiki (Hizikia fusiforme)

Search Result 2, Processing Time 0.015 seconds

Arsenic Speciation and Risk Assesment of Hijiki (Hizikia fusiforme) by HPLC-ICP-MS (HPLC-ICP-MS를 이용한 톳의 비소 화학종 분석 및 위해성 평가)

  • Ryu, Keun-Young;Shim, Sung-Lye;Hwang, In-Min;Jung, Min-Seok;Jun, Sam-Nyeo;Seo, Hye-Young;Park, Jong-Seok;Kim, Hee-Yeon;Om, Ae-Sun;Park, Kyung-Su;Kim, Kyong-Su
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • This study investigated arsenic speciation and risk assesment in 30 samples of hijiki purchased from local market in 10 Korean cities. The mean arsenic concentration of the hijiki samples was 45.65 mg/kg (dryness; moisture content of 91.1${\pm}$1.6%), and the major arsenic compound was arsenate [As(V)]. The concentrations of As(V) and As(III), as inorganic arsenic compounds, were detected to be 40.36 mg/kg and 0.37 mg/kg, respectively, and made up 88.6% (40.46 mg/kg) of the arsenic in the hijiki. Among the samples, the highest inorganic arsenic concentration was identified at 9.19 mg/kg (wet), and for an adult with a body weight of 60 kg was within an acceptable level as 0.7% (6.43 mg/60 kg/week) when compared with the provisional tolerable weekly intake (PTWI) (900 mg/60 kg/week), and would be considered safe with respect to health-hazardous effects.

Development of Hijiki-based Edible Films Using High-pressure Homogenization (고압 균질기를 이용한 가식성 톳 필름 개발)

  • Lee, Han-Na;Min, Sea-Cheol
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.162-167
    • /
    • 2012
  • Edible biopolymer films were developed from hijiki ($Hizikia$ $fusiforme$), using a high-pressure homogenization (HPH). Effects of pressure and pass number of HPH on color, tensile, moisture barrier properties, flavor profiles, and microstructure of hijiki films were investigated. A hydrocolloid of hijiki was processed by HPH at 69, 103, or 152 MPa with 1, 2, or 3 passes. A hijiki-base film was formed by drying a film-forming solution which was prepared by mixing of the HPH-processed suspension with glycerol and Polysorbate 20. Tensile strength and elastic modulus increased with increasing HPH pressure. Uniformity of the films increased as the pressure of HPH with 1 pass increased and the number of pass increased at 152 MPa. Water vapor permeability ($2.1-3.3g{\cdot}mm/kPa{\cdot}h{\cdot}m^2$) and water solubility (0.4-1.0%), which are relatively low compared to those of many other edible films, show the potential that hijiki-base films are applied to the range of low to intermediate moisture food as wrapping or coating.