• Title/Summary/Keyword: higher order performance

Search Result 2,138, Processing Time 0.047 seconds

Gene polymorphisms influencing yield, composition and technological properties of milk from Czech Simmental and Holstein cows

  • Citek, Jindrich;Brzakova, Michaela;Hanusova, Lenka;Hanus, Oto;Vecerek, Libor;Samkova, Eva;Krizova, Zuzana;Hostickova, Irena;Kavova, Tereza;Strakova, Karolina;Hasonova, Lucie
    • Animal Bioscience
    • /
    • v.34 no.1
    • /
    • pp.2-11
    • /
    • 2021
  • Objective: The aim of the study was to evaluate the influence of polymorphic loci and other factors on milk performance and the technological properties of milk. Methods: The analysis was performed on Simmental and Holstein cows in field conditions (n = 748). Milk yield in kg, fat and protein percentage and yield were evaluated. Technological properties were evaluated by milk fermentation ability, renneting, and an alcohol test. Polymorphisms in the acyl-CoA diacylgycerol transferase 1 (DGAT1), leptin (LEP), fatty acid synthase (FASN), stearoyl CoA desaturase 1 (SCD1), casein beta (CSN2), casein kappa (CSN3), and lactoglobulin beta genes were genotyped, and association analysis was performed. Results: The DGAT1 AA genotype was associated with higher milk, protein and fat yields (p<0.05). The MM genotype in the LEP gene was associated with a lower protein percentage and the W allele with a higher protein percentage (p<0.05). In cows with the FASN GG genotype, the protein percentage was higher, but the A allele was associated with higher milk, protein and fat yields than the G allele. The TT genotype in SCD1 was associated with the lowest milk, protein and fat yields and with the highest milk protein percentage (p<0.01). The T allele had higher values than the C allele (p<0.05) except for fat percentage. The genotype CSN3 AA was associated with a significantly heightened milk yield; BB was associated with a high protein percentage. The effect of the alleles on the technological properties was not significant. The CSN2 BB genotype was associated with the best alcohol test (p<0.01), and the renneting order was inverse. Milk from cows with the CSN2 A1A1 genotype was best in the milk fermentation ability. CSN3 significantly affected the technological properties. Conclusion: The findings revealed the potential of some polymorphic loci for use in dairy cattle breeding and for the management of milk quality. In field research, the pivotal role of farms in milk yield, composition and technological properties was confirmed.

A Study on the Inter-Carrier Interference Cancelation for DMT Systems (DMT 시스템에서 반송파간 간섭제거에 대한 연구)

  • Chung, Kil-Soo;Lee, Won-Seok;Kang, Hee-Hoon
    • 전자공학회논문지 IE
    • /
    • v.45 no.1
    • /
    • pp.24-30
    • /
    • 2008
  • In this paper, Digital MultiTone(DMT) is an emerging multi-carrier modulation scheme, which has been adopted for VDSL(Very high speed Digital Subscribe Line). A problem of DMT is its sensitivity to frequency offset between the transmitted and received carrier frequencies. This frequency offset introduces inter-carrier interference(ICI) in the DMT symbol. This paper is proposed an ICI cancelation scheme using Kalman Filtering. The performance of the proposed method is compared with conventional methods in terms of bit error rate performance, bandwidth efficiency, and computational complexity. Through simulations, it is shown that for high values of the frequency offset and for higher order modulation schemes, the EKF(Enhanced Kalman Filtering) method perform better than the others.

Energy-balance assessment of shape memory alloy-based seismic isolation devices

  • Ozbulut, O.E.;Hurlebaus, S.
    • Smart Structures and Systems
    • /
    • v.8 no.4
    • /
    • pp.399-412
    • /
    • 2011
  • This study compares the performance of two smart isolation systems that utilize superelastic shape memory alloys (SMAs) for seismic protection of bridges using energy balance concepts. The first isolation system is a SMA/rubber-based isolation system (SRB-IS) and consists of a laminated rubber bearing that decouples the superstructure from the bridge piers and a SMA device that provides additional energy dissipation and re-centering capacity. The second isolation system, named as superelastic-friction base isolator (S-FBI), combines the superelastic SMAs with a flat steel-Teflon bearing rather than a laminated rubber bearing. Seismic energy equations of a bridge structure with SMA-based isolation systems are established by absolute and relative energy balance formulations. Nonlinear time history analyses are performed in order to assess the effectiveness of the isolation systems and to compare their performance. The program RSPMatch 2005 is employed to generate spectrum compatible ground motions that are used in time history analyses of the isolated bridge. Results indicate that SRB-IS produces higher seismic input energy, recoverable energy and base shears as compared to the S-FBI system. Also, it is shown that combining superelastic SMAs with a sliding bearing rather than rubber bearing significantly reduce the amount of the required SMA material.

Cooperative Relaying with Interference Cancellation for Secondary Spectrum Access

  • Dai, Zeyang;Liu, Jian;Long, Keping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.10
    • /
    • pp.2455-2472
    • /
    • 2012
  • Although underlay spectrum sharing has been shown as a promising technique to promote the spectrum utilization in cognitive radio networks (CRNs), it may suffer bad secondary performance due to the strict power constraints imposed at secondary systems and the interference from primary systems. In this paper, we propose a two-phase based cooperative transmission protocol with the interference cancellation (IC) and best-relay selection to improve the secondary performance in underlay models under stringent power constraints while ensuring the primary quality-of-service (QoS). In the proposed protocol, IC is employed at both the secondary relays and the secondary destination, where the IC-based best-relay selection and cooperative relaying schemes are well developed to reduce the interference from primary systems. The closed-form expression of secondary outage probability is derived for the proposed protocol over Rayleigh fading channels. Simulation results show that, with a guaranteed primary outage probability, the proposed protocol can achieve not only lower secondary outage probability but also higher secondary diversity order than the traditional underlay case.

Investigation of the accuracy of different finite element model reduction techniques

  • Ghannadi, Parsa;Kourehli, Seyed Sina
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.3
    • /
    • pp.417-428
    • /
    • 2018
  • In this paper, various model reduction methods were assessed using a shear frame, plane and space truss structures. Each of the structures is one-dimensional, two-dimensional and three-dimensional, respectively. Three scenarios of poor, better, and the best were considered for each of the structures in which 25%, 40%, and 60% of the total degrees of freedom (DOFs) were measured in each of them, respectively. Natural frequencies of the full and reduced order structures were compared in each of the numerical examples to assess the performance of model reduction methods. Generally, it was found that system equivalent reduction expansion process (SEREP) provides full accuracy in the model reduction in all of the numerical examples and scenarios. Iterated improved reduced system (IIRS) was the second-best, providing acceptable results and lower error in higher modes in comparison to the improved reduced system (IRS) method. Although the Guyan's method has very low levels of accuracy. Structures were classified with the excitation frequency. High-frequency structures compared to low-frequency structures have been poor performance in the model reduction methods (Guyan, IRS, and IIRS).

On the Current Limiting Characteristics and Parameters of Superconducting Fault Current Limiter Introduced to 345kV Electric Power System due to Resistive-Type, Reactive-Type (유도형과 저항형 초전도한류기의 파라메타를 고려한 전력계통도입효과의 분석 및 고찰)

  • 홍원표;김용학;전영환;이승학
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.285-290
    • /
    • 2002
  • Power systems are becoming larger and larger for meeting electric power demand. Therefore, the over-currents resulting from contingencies such short circuits are increasing higher. The Maximum short circuit current of modern power system is becoming so large that circuit breaker are not expected th be able to shut down the current in the future. In order to cut over-currents, a system composed of a superconducting fault current limiter(SFCL) and traditional breaker seems to provide a promising solution for future power operation. In present paper, three line-to-ground fault is assumed to happen at the center of 345kV transmission lines in a large capacity electric power system The superconducting fault current limiter was represented using a commutation type, which consists of a non-inductive superconducting coil and current limiting element(resistor or reactor). The introduction merits of the SFCL were investigated quantitatively by RTDS/EMTDC from the viewpoint of current limiting performance, the prevention of the voltage drop at the load bus and comparison characteristics for two type SFCL. Desired design specification and operation parameters of SFCL were also given qualitatively by the performance evaluation of the two type SFCL in the power system.

  • PDF

Preparation of Conductive Leather Gloves for Operating Capacitive Touch Screen Displays (정전용량방식 터치스크린에 작동하는 전도성 가죽장갑 소재의 제조)

  • Hong, Kyung Hwa
    • Fashion & Textile Research Journal
    • /
    • v.14 no.6
    • /
    • pp.1018-1023
    • /
    • 2012
  • Smartphone is integrated into the daily lives of all types of people not even young generation. A touch screen display is a primary input device of a smart phone, a tablet computer, etc. While there are many tough technologies in existence, resistive and capacitive are dominant and currently lead the touch screen panel industry. And a capacitive touch screen panel widely used in smart phones is coated with a material that stores electrical charges. In this study, we tried to manufacture gloves produced with electro-conducting leather as a tool to operate a touch panel screen. Therefore, electrically conductive materials, Polyaniline(PANI), Poly(3,4-ethylenedioxythiophene) (PEDOT), and Carbon nanotubes (CNT) were applied to the surface of leather to be used as a touching operator for capacitive touch screen panel. The leather samples were treated by simple painting method; firstly, they were painted with aqueous solution containing each of the electrically conductive materials and then dried. This cycle was repeated three times. Consequently, the treated leather samples showed electrical conductivity and reasonable working performance to the capacitive touch screen. And, PANI showed the best performance and highest electrical conductivity, and then PEDOT and, CNT in decreasing order. This is because the solubilities of PANI and PEDOT show higher than dispersibility of CNT. Thus, the concentration of conducting polymers was greater than that of CNT in the treating solutions.

Selection and Verification of 3D Finite Element Method Model for Silicone Foot Sensor with Low Detection Pressure (낮은 감지 압력신호 값을 가지는 실리콘 족적 센서에 대한 3차원 유한요소 해석 모델 선정 및 검증)

  • Seong, Byuck Kyung;Seo, Hyung Kyu;Kim, Dong Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.11
    • /
    • pp.1299-1307
    • /
    • 2014
  • In this work, an appropriate analysis model of a precise foot sensor with low detection pressure capability under a low range of variation in the dimensional variables was proposed. With a simple two-dimensional model, it was found that a remarkably high error level sometimes occurred between the analysis and experimental results. In order to overcome the error and improve the performance, a three-dimensional model was introduced, and the detection pressure and sensor characteristics were compared with those of the experimental results, which showed its enhanced performance with less error and higher precision.

Study on Impacts of Using Characteristics of Public Systems on Customer Satisfaction and Loyalty of the Systems : Korean E-Procurement System (공공시스템사용특성이 고객만족과 충성도에 미치는 영향에 관한 연구 : 국가종합전자조달시스템)

  • Lim, Kyung-Won;Kim, Yon-Tae;Kim, Chul Soo
    • Journal of Information Technology Services
    • /
    • v.12 no.1
    • /
    • pp.83-98
    • /
    • 2013
  • Advanced IT of Korea is the important factor that has improved the performance of business to business e-business systems, especially On-Line E-procurement System (KONEPS). Obviously KONEPS is well positioned in businesses of Korea. In order to be higher performance in KONEPS, it needed to be analysed important characteristics composed of KONEPS. Even though KONEPS has been operating well, user's satisfaction and customer loyalty for KONEPS was not high in real businesses. In this research, we tried to find the factors affecting user satisfaction and customer loyalty for KONEPS and figure out the mechanism among the factors. We surveyed using characteristics, which are information diversity, usability, system reliability and stability, on suppliers, main users of KONEPS. We consider the using characteristics as independent factors of the research model. Meanwhile, we model user's satisfaction and customer loyalty as the dependent factors. The results from the study are helpful in providing policies and strategies to promote the use of KONEPS.

Development of Distributed Micro Gas Turbine(MGT) Technology by using Swine BID-ENERGY (축산폐기물 BIO-ENERGY를 이용한 분산형 마이크로 가스터빈 발전기술 개발)

  • Hur Kwang-beom;Park Jung-Keuk;Lee Jung-bin;Rhim Sang-gyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.463-466
    • /
    • 2005
  • As the distributed generation becomes more reliable and economically feasible, it is expected that a higher application of the distributed generation units would be interconnected to the existing grids. This new generation technology is linked to a large number of factors like economics and performance, safety and reliability, market regulations, environmental issues, or grid connection constrains. KEPOD (Korea Electric Power Corporation) is performing the project to develope the Distributed Micro Gas Turbine (MGT) technologies by using Swine BID-ENERGY. This paper describes the plans and strategies for the renewable energy of MGT on actual grid-connection under Korean situations. KEPOD also, has a research plan on bio-gas pretreatment system applicable to our domestic swine renewable resources and is performing concept design of pilot plant to test grid operation. In addition, this testing will be conducted in order to respond to a wide variety of needs for application and economic evaluation in the field of On-site generation.

  • PDF