• Title/Summary/Keyword: higher order performance

Search Result 2,137, Processing Time 0.039 seconds

A Study on the Performance Characteristics of the Hybrid Rocket with Blowdown Oxidizer Feeding System (블로우다운 산화제 공급방식을 적용한 하이브리드 추진 시스템의 성능특성에 관한 연구)

  • Yoon, Chang-Jin;Kim, Jin-Kon;Moon, Hee-Jang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.248-251
    • /
    • 2007
  • The blowdown oxidizer feeding system is effective in the respect of higher reliability by the small number of parts and the absence of additional pressurization tanks, but it also has the unfavorable disadvantage such as thrust variation during the operation. Thus, in order to understand the these performance characteristics inherent in the Hybrid Rocket Motor (HRM) with blowdown oxidizer feeding system, this study proposed the integrated mathematical model to describe physical phenomena in the following parts: the oxidizer tank, combustion chamber, fuel grain, nozzle and injector.

  • PDF

Study on the characteristic of heat exchange for vertical geothermal system using the numerical simulation (수치 시뮬레이션을 이용한 수직밀폐형 지열시스템의 채열특성에 관한 연구)

  • Nam, Yu-Jin;Oh, Jin-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.2
    • /
    • pp.66-72
    • /
    • 2014
  • Ground source heat pump system can achieve high efficiency of performance by utilizing annually constant underground temperature to provide heat source for space heating and cooling. Generally, the depth of constant-temperature zone under the ground depends on surface heat flux and soil properties. The deeper the ground heat exchanger is installed, the higher the heat exchange rate can be acquired. However, in order to optimally design the system, it is necessary to consider both the installation cost and the system performance. In this study, performance analysis of ground source heat pump system according to the depth has been conducted through the case study.

Experiment with Axiom Propeller in Cavitation Tunnel

  • Seo, Kwang-Cheol
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.3
    • /
    • pp.296-303
    • /
    • 2014
  • The Axiom propeller is a unique 3 bladed propeller and it enables to generate the same amount of thrust going ahead as it does going astern because of its 's' type skew-symmetric blade section. A earlier variant of the design (Axiom I propeller) performed a low propeller efficiency, maximum 35 % efficiency, and further blade outline design was carried out to achieve a higher efficiency. The optimized new blade outline (Axiom II propeller) has more conventional Kaplan geometry shape than Axiom I propeller. Model tests of open water performance and propeller cavitation for both propellers were conducted at Emerson Cavitation Tunnel in order to compare their performances. Experiment results revealed that Axiom II propeller provides a maximum 53 % efficiency and provides better efficiency and cavitation performance over the Axiom I propeller under similar conditions.

Low Cost, High Performance, and Effective Overdrive Implementation Method for LCD Systems

  • Cho, Young-Min;Park, Chan-Soo;Bhowmik, Achintya;Lee, Seung-Woo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1168-1171
    • /
    • 2009
  • We propose a low cost, high performance, effective overdrive implementation method for liquid crystal display systems. The technique can calculate all overdrive values using higher order approximation algorithm by only three measurements. We find that our technique can be applied regardless of LCD panels. Due to its simplicity, we can also tune motion performance of the LCD systems without measurements.

  • PDF

Development of a meshless finite mixture (MFM) method

  • Cheng, J.Q.;Lee, H.P.;Li, Hua
    • Structural Engineering and Mechanics
    • /
    • v.17 no.5
    • /
    • pp.671-690
    • /
    • 2004
  • A meshless method with novel variation of point collocation by finite mixture approximation is developed in this paper, termed the meshless finite mixture (MFM) method. It is based on the finite mixture theorem and consists of two or more existing meshless techniques for exploitation of their respective merits for the numerical solution of partial differential boundary value (PDBV) problems. In this representation, the classical reproducing kernel particle and differential quadrature techniques are mixed in a point collocation framework. The least-square method is used to optimize the value of the weight coefficient to construct the final finite mixture approximation with higher accuracy and numerical stability. In order to validate the developed MFM method, several one- and two-dimensional PDBV problems are studied with different mixed boundary conditions. From the numerical results, it is observed that the optimized MFM weight coefficient can improve significantly the numerical stability and accuracy of the newly developed MFM method for the various PDBV problems.

Performance assessment of precast concrete pier cap system

  • Kim, T.H.;Kim, Y.J.;Shin, H.M.
    • Computers and Concrete
    • /
    • v.13 no.4
    • /
    • pp.501-516
    • /
    • 2014
  • The purpose of this study was to investigate the performance of precast concrete pier cap system. The proposed precast pier cap provides an alternative to current cast-in-place systems, particularly for projects in which a reduced construction time is desired. Five large-scale pier cap specimens were constructed and tested under quasistatic monotonic loading. The computer program, RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology) was used for the analysis of reinforced concrete structures. A bonded tendon element is used based on the finite element method, and can represent the interaction between the tendon and concrete of a prestressed concrete member. A joint element is used in order to predict the inelastic behaviors of segmental joints with a shear key. This study documents the testing of the precast concrete pier cap system under monotonic loading and presents conclusions and design recommendations based on the experimental and analytical findings. Additional full-scale experimental research is needed to refine and confirm design details, especially for actual detailing employed in the field.

A Study on the Strategic Implementation and Performance of Factory Automation with Advanced Manufacturing Technology (신생산 기술을 바탕으로 한 공장자동화의 전략적 실행과 성과에 관한 연구)

  • Kim, Suk-Eung;Sohn, So-Young
    • IE interfaces
    • /
    • v.12 no.2
    • /
    • pp.274-284
    • /
    • 1999
  • This study is aimed at examining the relationship among the advanced manufacturing technology(AMT) types adopted in Korea, necessary strategic management activities for the selected AMT types and the performance of the AMT introduced. In order to identify such relationship, multivariate analyses are used based on the survey data collected from industry types such as metal processing and assembly, automobile parts, automobile assembly. electric and electronic devices. The study results indicate the following: (1) companies using CIM or ERP tend to be more prepared in terms of human resources; (2) companies adopted CIM and MRPII tend to demonstrate higher performance in terms of both organizational effectiveness and operational efficiency; (3) companies which adopted JIT or ERP perform better in terms of operational efficiency.

  • PDF

EXPERIMENTAL INVESTIGATION ON THE EFFECT OF MAGNETIC FLUX TO REDUCE EMISSIONS AND IMPROVE COMBUSTION PERFORMANCE IN A TWO-STROKE, CATALYTIC-COATED, SPARK-IGNITION ENGINE

  • Govindasamy, P.;Dhandapani, S.
    • International Journal of Automotive Technology
    • /
    • v.8 no.5
    • /
    • pp.533-542
    • /
    • 2007
  • The two stroke spark ignition engine is the greatest contributor of the total vehicular pollution in a country like India. It is therefore an item that requires great attention in order to reduce fuel consumption and its concomitant pollution. The use of strong magnetic charge in the fuel line gives a complete and clean burn so that power is increased while operating expenses are reduced. The magnetic flux on the fuel line dramatically reduces harmful exhaust emissions while increasing mileage, thereby saving money and improving engine performance. It increases combustion efficiency and provides higher-octane performance. The experimental results show that the magnetic flux on fuel reduces the carbon monoxide emission up to 13% in a base engine, 23% in a copper-coated engine and 29% in a zirconia-coated engine.

Cycle Analysis on LNG Boil-off Gas Re-Liquefaction Plant

  • Chin, Y.W.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.4
    • /
    • pp.34-38
    • /
    • 2006
  • Cycle analysis was performed in order to find the optimum design point of the LNG Boil-off gas re-liquefaction system. Thermodynamic analysis revealed the system could be defined by three state variables. Thus the system performance could be described by the three cold endpoint temperatures of the three-pass heat exchanger. This enabled us to investigate the cycle performance in terms of the heat exchanger parameters. To get access to the cycle states of higher system performances, larger heat exchangers were found necessary. Also the thermal pinch in cryogenic heat exchangers was found to act as a limiting factor to the system performance.

Verification of the Moderating Effect of Course Satisfaction on Learning Presence, and Academic Performance According to Course Delivery Mode

  • Sanghee KIM
    • Educational Technology International
    • /
    • v.24 no.1
    • /
    • pp.29-51
    • /
    • 2023
  • This study examined the moderating effect of course satisfaction with class on the relationship between the mode of course delivery and learning presence and performance in university settings. Results showed that there was a moderating effect of the course satisfaction on the relationship between course delivery mode and learning presence. Specifically, higher satisfaction with instructor's teaching activities was associated with improved learning presence in face-to-face, blended, and online learning, in that order. However, there was no significant moderating effect on academic performance. These findings suggest that universities should consider not only the mode of course delivery and highlight the importance of systematic course design by instructors.