• Title/Summary/Keyword: higher order accuracy

Search Result 791, Processing Time 0.029 seconds

A Study on Domestic Applicability for the Korean Cosmic-Ray Soil Moisture Observing System (한국형 코즈믹 레이 토양수분 관측 시스템을 위한 국내 적용성 연구)

  • Jaehwan Jeong;Seongkeun Cho;Seulchan Lee;Kiyoung Kim;Yongjun Lee;Chung Dae Lee;Sinjae Lee;Minha Choi
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.233-246
    • /
    • 2023
  • In terms of understanding the water cycle and efficient water resource management, the importance of soil moisture has been highlighted. However, in Korea, the lack of qualified in-situ soil moisture data results in very limited utility. Even if satellite-based data are applied, the absence of ground reference data makes objective evaluation and correction difficult. The cosmic-ray neutron probe (CRNP) can play a key role in producing data for satellite data calibration. The installation of CRNP is non-invasive, minimizing damage to the soil and vegetation environment, and has the advantage of having a spatial representative for the intermediate scale. These characteristics are advantageous to establish an observation network in Korea which has lots of mountainous areas with dense vegetation. Therefore, this study was conducted to evaluate the applicability of the CRNP soil moisture observatory in Korea as part of the establishment of a Korean cOsmic-ray Soil Moisture Observing System (KOSMOS). The CRNP observation station was installed with the Gunup-ri observation station, considering the ease of securing power and installation sites and the efficient use of other hydro-meteorological factors. In order to evaluate the CRNP soil moisture data, 12 additional in-situ soil moisture sensors were installed, and spatial representativeness was evaluated through a temporal stability analysis. The neutrons generated by CRNP were found to be about 1,087 counts per hour on average, which was lower than that of the Solmacheon observation station, indicating that the Hongcheon observation station has a more humid environment. Soil moisture was estimated through neutron correction and early-stage calibration of the observed neutron data. The CRNP soil moisture data showed a high correlation with r=0.82 and high accuracy with root mean square error=0.02 m3/m3 in validation with in-situ data, even in a short calibration period. It is expected that higher quality soil moisture data production with greater accuracy will be possible after recalibration with the accumulation of annual data reflecting seasonal patterns. These results, together with previous studies that verified the excellence of CRNP soil moisture data, suggest that high-quality soil moisture data can be produced when constructing KOSMOS.

The Audience Behavior-based Emotion Prediction Model for Personalized Service (고객 맞춤형 서비스를 위한 관객 행동 기반 감정예측모형)

  • Ryoo, Eun Chung;Ahn, Hyunchul;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.73-85
    • /
    • 2013
  • Nowadays, in today's information society, the importance of the knowledge service using the information to creative value is getting higher day by day. In addition, depending on the development of IT technology, it is ease to collect and use information. Also, many companies actively use customer information to marketing in a variety of industries. Into the 21st century, companies have been actively using the culture arts to manage corporate image and marketing closely linked to their commercial interests. But, it is difficult that companies attract or maintain consumer's interest through their technology. For that reason, it is trend to perform cultural activities for tool of differentiation over many firms. Many firms used the customer's experience to new marketing strategy in order to effectively respond to competitive market. Accordingly, it is emerging rapidly that the necessity of personalized service to provide a new experience for people based on the personal profile information that contains the characteristics of the individual. Like this, personalized service using customer's individual profile information such as language, symbols, behavior, and emotions is very important today. Through this, we will be able to judge interaction between people and content and to maximize customer's experience and satisfaction. There are various relative works provide customer-centered service. Specially, emotion recognition research is emerging recently. Existing researches experienced emotion recognition using mostly bio-signal. Most of researches are voice and face studies that have great emotional changes. However, there are several difficulties to predict people's emotion caused by limitation of equipment and service environments. So, in this paper, we develop emotion prediction model based on vision-based interface to overcome existing limitations. Emotion recognition research based on people's gesture and posture has been processed by several researchers. This paper developed a model that recognizes people's emotional states through body gesture and posture using difference image method. And we found optimization validation model for four kinds of emotions' prediction. A proposed model purposed to automatically determine and predict 4 human emotions (Sadness, Surprise, Joy, and Disgust). To build up the model, event booth was installed in the KOCCA's lobby and we provided some proper stimulative movie to collect their body gesture and posture as the change of emotions. And then, we extracted body movements using difference image method. And we revised people data to build proposed model through neural network. The proposed model for emotion prediction used 3 type time-frame sets (20 frames, 30 frames, and 40 frames). And then, we adopted the model which has best performance compared with other models.' Before build three kinds of models, the entire 97 data set were divided into three data sets of learning, test, and validation set. The proposed model for emotion prediction was constructed using artificial neural network. In this paper, we used the back-propagation algorithm as a learning method, and set learning rate to 10%, momentum rate to 10%. The sigmoid function was used as the transform function. And we designed a three-layer perceptron neural network with one hidden layer and four output nodes. Based on the test data set, the learning for this research model was stopped when it reaches 50000 after reaching the minimum error in order to explore the point of learning. We finally processed each model's accuracy and found best model to predict each emotions. The result showed prediction accuracy 100% from sadness, and 96% from joy prediction in 20 frames set model. And 88% from surprise, and 98% from disgust in 30 frames set model. The findings of our research are expected to be useful to provide effective algorithm for personalized service in various industries such as advertisement, exhibition, performance, etc.

Self-optimizing feature selection algorithm for enhancing campaign effectiveness (캠페인 효과 제고를 위한 자기 최적화 변수 선택 알고리즘)

  • Seo, Jeoung-soo;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.173-198
    • /
    • 2020
  • For a long time, many studies have been conducted on predicting the success of campaigns for customers in academia, and prediction models applying various techniques are still being studied. Recently, as campaign channels have been expanded in various ways due to the rapid revitalization of online, various types of campaigns are being carried out by companies at a level that cannot be compared to the past. However, customers tend to perceive it as spam as the fatigue of campaigns due to duplicate exposure increases. Also, from a corporate standpoint, there is a problem that the effectiveness of the campaign itself is decreasing, such as increasing the cost of investing in the campaign, which leads to the low actual campaign success rate. Accordingly, various studies are ongoing to improve the effectiveness of the campaign in practice. This campaign system has the ultimate purpose to increase the success rate of various campaigns by collecting and analyzing various data related to customers and using them for campaigns. In particular, recent attempts to make various predictions related to the response of campaigns using machine learning have been made. It is very important to select appropriate features due to the various features of campaign data. If all of the input data are used in the process of classifying a large amount of data, it takes a lot of learning time as the classification class expands, so the minimum input data set must be extracted and used from the entire data. In addition, when a trained model is generated by using too many features, prediction accuracy may be degraded due to overfitting or correlation between features. Therefore, in order to improve accuracy, a feature selection technique that removes features close to noise should be applied, and feature selection is a necessary process in order to analyze a high-dimensional data set. Among the greedy algorithms, SFS (Sequential Forward Selection), SBS (Sequential Backward Selection), SFFS (Sequential Floating Forward Selection), etc. are widely used as traditional feature selection techniques. It is also true that if there are many risks and many features, there is a limitation in that the performance for classification prediction is poor and it takes a lot of learning time. Therefore, in this study, we propose an improved feature selection algorithm to enhance the effectiveness of the existing campaign. The purpose of this study is to improve the existing SFFS sequential method in the process of searching for feature subsets that are the basis for improving machine learning model performance using statistical characteristics of the data to be processed in the campaign system. Through this, features that have a lot of influence on performance are first derived, features that have a negative effect are removed, and then the sequential method is applied to increase the efficiency for search performance and to apply an improved algorithm to enable generalized prediction. Through this, it was confirmed that the proposed model showed better search and prediction performance than the traditional greed algorithm. Compared with the original data set, greed algorithm, genetic algorithm (GA), and recursive feature elimination (RFE), the campaign success prediction was higher. In addition, when performing campaign success prediction, the improved feature selection algorithm was found to be helpful in analyzing and interpreting the prediction results by providing the importance of the derived features. This is important features such as age, customer rating, and sales, which were previously known statistically. Unlike the previous campaign planners, features such as the combined product name, average 3-month data consumption rate, and the last 3-month wireless data usage were unexpectedly selected as important features for the campaign response, which they rarely used to select campaign targets. It was confirmed that base attributes can also be very important features depending on the type of campaign. Through this, it is possible to analyze and understand the important characteristics of each campaign type.

Dose Evaluation of TPS according to Treatment Sites in IMRT (세기조절방사선치료 시 치료 부위에 따른 치료계획 시스템 간 선량평가)

  • Kim, Jin Man;Kim, Jong Sik;Hong, Chae Seon;Park, Ju Young;Park, Su Yeon;Ju, Sang Gyu
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.2
    • /
    • pp.181-186
    • /
    • 2013
  • Purpose: This study executed therapy plans on prostate cancer (homogeneous density area) and lung cancer (non-homogeneous density area) using radiation treatment planning systems such as $Pinnacle^3$ (version 9.2, Philips Medical Systems, USA) and Eclipse (version 10.0, Varian Medical Systems, USA) in order to quantify the difference between dose calculation according to density in IMRT. Materials and Methods: The subjects were prostate cancer patients (n=5) and lung cancer patients (n=5) who had therapies in our hospital. Identical constraints and optimization process according to the Protocol were administered on the subjects. For the therapy plan of prostate cancer patients, 10 MV and 7Beam were used and 2.5 Gy was prescribed in 28 fx to make 70 Gy in total. For lung cancer patients, 6 MV and 6Beam were used and 2 Gy was prescribed in 33 fx to make 66 Gy in total. Through two therapy planning systems, maximum dose, average dose, and minimum dose of OAR (Organ at Risk) of CTV, PTV and around tumor were investigated. Results: In prostate cancer, both therapy planning systems showed within 2% change of dose of CTV and PTV and normal organs (Bladder, Both femur and Rectum out) near the tumor satisfied the dose constraints. In lung cancer, CTV and PTV showed less than 2% changes in dose and normal organs (Esophagus, Spinal cord and Both lungs) satisfied dose restrictions. However, the minimum dose of Eclipse therapy plan was 1.9% higher in CTV and 3.5% higher in PTV, and in case of both lungs there was 3.0% difference at V5 Gy. Conclusion: Each TPS according to the density satisfied dose limits of our hospital proving the clinical accuracy. It is considered more accurate and precise therapy plan can be made if studies on treatment planning for diverse parts and the application of such TPS are made.

  • PDF

A Technique of Forecasting Market Share of Transportation Modes after Introducing New Lines of Urban Rail Transit with Observed Mode Share Data (관측 교통수단 분담률 자료를 활용한 도시철도 신설 후 수단분담률 예측분석 기법)

  • Seo, Dong-Jeong;Kim, Ik-Ki;Lee, Tae-Hoon
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.1
    • /
    • pp.7-18
    • /
    • 2012
  • This study suggested a method of forecasting market-share of each mode after introducing new urban rail transit lines. The study reflected the observed market share of presently operating urban rail transit into forecasting process in order to improve accuracy in predicting market share of each modes. For more realistic representation of the forecasting model, we categorized O/D pairs according to attributes of trip distance, access time and number of transfers. The analysis results of traveler's mode choice behavior with observed data showed that the trip distances are longer, the share of urban rail tends to be higher, and that the number of transfers is fewer and the access times are lesser, the share of urban rail also tends to be higher. Then, incremental logit model was used in estimating mode choice probabilities for O/D pairs along with rail transit lines while utilizing observed market shares of each modes and differences in transit service level. As the next step, the market share of rail transit after introducing new rail transit lines was forecasted by using incremental logit model with the intial share values calculated the previous analysis step. It also reflected changes in level of service for automobile in highway due to changes in highway systems and changes in mode shares after introducing new lines of rail transit. It can be expected that the proposed method would more realistically duplicates phenomena of mode choice behavior for rail transit and that it would be more theoretically logical than the typical existing methods using SP data and incremental logit model or using addictive logit model in this country.

Consideration of density matching technique of the plate type direct radiologic image system and the conventional X-ray film;first step for the subtraction (Ektaspeed plus 필름을 이용한 일반 방사선시스템과 Digora를 이용한 디지탈 영상시스템의 밀도변화 비교연구)

  • So, Sung-Soo;Noh, Hyeun-Soo;Kim, Chang-Sung;Choi, Seong-Ho;Kim, Kee-Deog;Cho, Kyoo-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.1
    • /
    • pp.199-211
    • /
    • 2002
  • Digital substraction technique and computer-assisted densitometirc analysis detect minor change in bone density and thus increase the diagnostic accuracy. This advantage as well as high sensitivity and objectivity which precludes human bias have drawn interest in radiologic research area. The objectives of this study are to verify if Radiographic density can be recognized in linear pattern when density profile of standard periapical radiograph with the aluminium stepwedge as the reference, was investigated under varies circumstances which can be encountered in clinical situations, and in addition to that to obtain mutual relationship between the existing standard radiographic system, and future digital image systems, by confirming the corelationship between the standard radiograph and Digora system which is a digital image system currently being used. In order to make quantitative analysis of the bone tissue, digital image system which uses high resolution automatic slide scanner as an input device, and Digora system were compared and analyzed using multifunctional program, Brain3dsp. The following conclusions were obtained. 1. Under common clinical situation that is 70kVp, 0.2 sec., and focal distance 10cm, Al-Equivalent image equation was found to be Y=11.21X+46.62 $r^2=0.9898$ in standard radiographic system, and Y=12.68X+74.59, $r^2=0.9528$ in Digora system, and linear relation was confirmed in both the systems. 2. In standard radiographic system, when all conditions were maintained the same except for the condition of developing solution, Al-Equivalent image equation was Y=10.07X+41.64, $r^2=0.9861$ which shows high corelationship. 3. When all conditions were maintained the same except for the Kilovoltage peak, linear relationship was still maintained under 60kVp, and Al-Equivalent image equation was Y=14.60X+68.86, $r^2=0.9886$ in the standard radiograhic system, and Y=13.90X+80.68, $r^2=0.9238$ in Digora system. 4. When all conditions were maintained the same except for the exposure time which was varied from 0.01 sec. to 0.8 sec., Al-Equivalent image equation was found to be linear in both the standard radiographic system and Digora system. The R-square was distributed from 0.9188 to 0.9900, and in general, standard radiographic system showed higher R-square than Digora system. 5. When all conditions were maintained the same except for the focal distance which was varied from 5cm to 30cm, Al-Equivalent image equation was found to be linear in both the standard radiographic system and Digora system. The R-square was distributed from 0.9463 to 0.9925, and the standard radiographic system had the tendency to show higher R-square in shorter focal distances.

Work Environment Measurement Results for Research Workers and Directions for System Improvement (연구활동종사자 작업환경측정 결과 및 제도개선 방향)

  • Hwang, Je-Gyu;Byun, Hun-Soo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.30 no.4
    • /
    • pp.342-352
    • /
    • 2020
  • Objectives: The characteristics of research workers are different from those working in the manufacturing industry. Furthermore, the reagents used change according to the research due to the characteristics of the laboratory, and the amounts used vary. In addition, since the working time changes almost every day, it is difficult to adjust the time according to exposure standards. There are also difficulties in setting standards as in the manufacturing industry since laboratory environments and the types of experiments performed are all different. For these reasons, the measurement of the working environment of research workers is not realistically carried out within the legal framework, there is a concern that the accuracy of measurement results may be degraded, and there are difficulties in securing data. The exposure evaluation based on an eight-hour time-weighted average used for measuring the working environment to be studied in this study may not be appropriate, but it was judged and consequently applied as the most suitable method among the recognized test methods. Methods: The investigation of the use of chemical substances in the research laboratory, which is the subject of this study, was conducted in the order of carrying out work environment measurement, sample analysis, and result analysis. In the case of the use of chemical substances, after organizing the substances to be measured in the working environment, the research workers were asked to write down the status, frequency, and period of use. Work environment measurement and sample analysis were conducted by a recognized test method, and the results were compared with the exposure standards (TWA: time weighted average value) for chemical substances and physical factors. Results: For the substances subject to work environment measurement, the department of chemical engineering was the most exposed, followed by the department of chemistry. This can lead to exposure to a variety of chemicals in departmental laboratories that primarily deal with chemicals, including acetone, hydrogen peroxide, nitric acid, sodium hydroxide, and normal hexane. Hydrogen chloride was measured higher than the average level of domestic work environment measurements. This can suggest that researchers in research activities should also be managed within the work environment measurement system. As a result of a comparison between the professional science and technology service industry and the education service industry, which are the most similar business types to university research laboratories among the domestic work environment measurements provided by the Korea Safety and Health Agency, acetone, dichloromethane, hydrogen peroxide, sodium hydroxide, nitric acid, normal hexane, and hydrogen chloride are items that appear higher than the average level. This can also be expressed as a basis for supporting management within the work environment measurement system. Conclusions: In the case of research activity workers' work environment measurement and management, specific details can be presented as follows. When changing projects and research, work environment measurement is carried out, and work environment measurement targets and methods are determined by the measurement and analysis method determined by the Ministry of Employment and Labor. The measurement results and exposure standards apply exposure standards for chemical substances and physical factors by the Ministry of Employment and Labor. Implementation costs include safety management expenses and submission of improvement plans when exposure standards are exceeded. The results of this study were presented only for the measurement of the working environment among the minimum health management measures for research workers, but it is necessary to prepare a system to improve the level of safety and health.

Development of a Model for Analylzing and Evaluating the Suitability of Locations for Cooling Center Considering Local Characteristics (지역 특성을 고려한 무더위쉼터의 입지특성 분석 및 평가 모델 개발)

  • Jieun Ryu;Chanjong Bu;Kyungil Lee;Kyeong Doo Cho
    • Journal of Environmental Impact Assessment
    • /
    • v.33 no.4
    • /
    • pp.143-154
    • /
    • 2024
  • Heat waves caused by climate change are rapidly increasing health damage to vulnerable groups, and to prevent this, the national, regional, and local governments are establishing climate crisis adaptation policy. A representative climate crisis adaptation policy to reduce heat wave damage is to expand the number of cooling centers. Because it is highly effective in a short period of time, most metropolitan local governments, except Jeonbuk, include the project as an adaptation policy. However, the criteria for selecting a cooling centers are different depending on the budget and non-budget, so the utilization rate and effectiveness of the cooling centers are all different. Therefore, in this study, we developed logistic regression models that can predict and evaluate areas with a high probability of expanding cooling centers in order to implement adaptation policy in local governments. In Incheon Metropolitan City, which consists of various heat wave-vulnerable environments due to the coexistence of the old city and the new city, a logistic model was developed to predict areas where heat waves can be cooling centered by dividing it into Ganghwa·Ongjin-gun and other regions, taking into account socioeconomic and environmental differences. As a result of the study, the statistical model for the Ganghwa·Ogjin-gun region showed that the higher the ground surface temperature and the more and more the number of elderly people over 65 years old, the higher the possibility of location of cooling centers, and the prediction accuracy was about 80.93%. The developed logistic regression model can predict and evaluate areas with a high potential as cooling centers by considering regional environmental and social characteristics, and is expected to be used for priority selection and management when designating additional cooling centers in the future.

Comparison of Natural Flow Estimates for the Han River Basin Using TANK and SWAT Models (TANK 모형과 SWAT 모형을 이용한 한강유역의 자연유출량 산정 비교)

  • Kim, Chul-Gyum;Kim, Nam-Won
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.3
    • /
    • pp.301-316
    • /
    • 2012
  • Two models, TANK and SWAT (Soil and Water Assessment Tool) were compared for simulating natural flows in the Paldang Dam upstream areas of the Han River basin in order to understand the limitations of TANK and to review the applicability and capability of SWAT. For comparison, simulation results from the previous research work were used. In the results for the calibrated watersheds (Chungju Dam and Soyanggang Dam), two models provided promising results for forecasting of daily flows with the Nash-Sutcliffe model efficiency of around 0.8. TANK simulated observations during some peak flood seasons better than SWAT, while it showed poor results during dry seasons, especially its simulations did not fall down under a certain value. It can be explained that TANK was calibrated for relatively larger flows than smaller ones. SWAT results showed a relatively good agreement with observed flows except some flood flows, and simulated inflows at the Paldang Dam considering discharges from upper dams coincided with observations with the model efficiency of around 0.9. This accounts for SWAT applicability with higher accuracy in predicting natural flows without dam operation or artificial water uses, and in assessing flow variations before and after dam development. Also, two model results were compared for other watersheds such as Pyeongchang-A, Dalcheon-B, Seomgang-B, Inbuk-A, Hangang-D, and Hongcheon-A to which calibrated TANK parameters were applied. The results were similar to the case of calibrated watersheds, that TANK simulated poor smaller flows except some flood flows and had same problem of keeping on over a certain value in dry seasons. This indicates that TANK application may have fatal uncertainties in estimating low flows used as an important index in water resources planning and management. Therefore, in order to reflect actually complex and complicated physical characteristics of Korean watersheds, and to manage efficiently water resources according to the land use and water use changes with urbanization or climate change in the future, it is necessary to utilize a physically based watershed model like SWAT rather than an existing conceptual lumped model like TANK.

A Comparison of Peripheral Doses Scattered from a Physical Wedge and an Enhanced Dynamic Wedge (금속쐐기와 기능강화동적쐐기의 조사야 주변부 선량 비교)

  • Park, Jong-Min;Kim, Hee-Jung;Min, Je-Soon;Lee, Je-Hee;Park, Charn-Il;Ye, Sung-Joon
    • Progress in Medical Physics
    • /
    • v.18 no.3
    • /
    • pp.107-117
    • /
    • 2007
  • In order to evaluate the radio-protective advantage of an enhanced dynamic wedge (EDW) over a physical wedge (PW), we measured peripheral doses scattered from both types of wedges using a 2D array of ion-chambers. A 2D array of ion-chambers was used for this purpose. In order to confirm the accuracy of the device we first compared measured profiles of open fields with the profiles calculated by our commissioned treatment planning system. Then, we measured peripheral doses for the wedge angles of $15^{\circ},\;30^{\circ},\;45^{\circ},\;and\;60^{\circ}$ at source to surface distances (SSD) of 80 cm and 90 cm. The measured points were located at 0.5 cm depth from 1 cm to 5 cm outside of the field edge. In addition, the measurements were repeated by using thermoluminescence dosimeters (TLD). The peripheral doses of EDW were (1.4% to 11.9%) lower than those of PW (2.5% to 12.4%). At 15 MV energy, the average peripheral doses of both wedges were 2.9% higher than those at 6MV energy. At a small SSD (80 cm vs. 90 cm), peripheral dose differences were more recognizable. The average peripheral doses to the heel direction were 0.9% lower than those to the toe direction. The results from the TLD measurements confirmed these findings with similar tendency. Dynamic wedges can reduce unnecessary scattered doses to normal tissues outside of the field edge in many clinical situations. Such an advantage is more profound in the treatment of steeper wedge angles, and shorter SSD.

  • PDF