• Title/Summary/Keyword: higher order accuracy

Search Result 791, Processing Time 0.026 seconds

The study on structural vulnerability analysis of small fixed wing UAV with hard landing (동체 착륙 방식의 소형 고정익 무인항공기 구조 취약점 분석)

  • Jeong, Seong-rok;Kang, Ju-hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.20-25
    • /
    • 2019
  • In this paper, the structural weakness analysis and quality improvement of small fixed wing UAV of the hard landing type were studied. Unlike conventional aircraft, small UAV does not use runways because of its small size. Instead, small UAV use hand launch takeoff and hard landings. This type has many operational advantages because it can take off and land in a narrow space. But, the hard landing has a strong impact on the structure of the UAV and can cause serious damage. In order to analyze the exact cause of this phenomenon, the structural analysis was carried out using the 3D structural analysis program (ABAQUS) to identify the location of the fracture. And to improve the accuracy of the structural analysis, properties of the material were obtained through specimen test. As a result of the analysis, structural weaknesses were identified and improved. Thus, the validity of the study was verified by demonstrating the quality of enhanced structure through a real impact test at a higher level of 1.5 times the maximum impact during operation.

Development of Convolutional Network-based Denoising Technique using Deep Reinforcement Learning in Computed Tomography (심층강화학습을 이용한 Convolutional Network 기반 전산화단층영상 잡음 저감 기술 개발)

  • Cho, Jenonghyo;Yim, Dobin;Nam, Kibok;Lee, Dahye;Lee, Seungwan
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.7
    • /
    • pp.991-1001
    • /
    • 2020
  • Supervised deep learning technologies for improving the image quality of computed tomography (CT) need a lot of training data. When input images have different characteristics with training images, the technologies cause structural distortion in output images. In this study, an imaging model based on the deep reinforcement learning (DRL) was developed for overcoming the drawbacks of the supervised deep learning technologies and reducing noise in CT images. The DRL model was consisted of shared, value and policy networks, and the networks included convolutional layers, rectified linear unit (ReLU), dilation factors and gate rotation unit (GRU) in order to extract noise features from CT images and improve the performance of the DRL model. Also, the quality of the CT images obtained by using the DRL model was compared to that obtained by using the supervised deep learning model. The results showed that the image accuracy for the DRL model was higher than that for the supervised deep learning model, and the image noise for the DRL model was smaller than that for the supervised deep learning model. Also, the DRL model reduced the noise of the CT images, which had different characteristics with training images. Therefore, the DRL model is able to reduce image noise as well as maintain the structural information of CT images.

Classification of muscle tension dysphonia (MTD) female speech and normal speech using cepstrum variables and random forest algorithm (켑스트럼 변수와 랜덤포레스트 알고리듬을 이용한 MTD(근긴장성 발성장애) 여성화자 음성과 정상음성 분류)

  • Yun, Joowon;Shim, Heejeong;Seong, Cheoljae
    • Phonetics and Speech Sciences
    • /
    • v.12 no.4
    • /
    • pp.91-98
    • /
    • 2020
  • This study investigated the acoustic characteristics of sustained vowel /a/ and sentence utterance produced by patients with muscle tension dysphonia (MTD) using cepstrum-based acoustic variables. 36 women diagnosed with MTD and the same number of women with normal voice participated in the study and the data were recorded and measured by ADSVTM. The results demonstrated that cepstral peak prominence (CPP) and CPP_F0 among all of the variables were statistically significantly lower than those of control group. When it comes to the GRBAS scale, overall severity (G) was most prominent, and roughness (R), breathiness (B), and strain (S) indices followed in order in the voice quality of MTD patients. As these characteristics increased, a statistically significant negative correlation was observed in CPP. We tried to classify MTD and control group using CPP and CPP_F0 variables. As a result of statistic modeling with a Random Forest machine learning algorithm, much higher classification accuracy (100% in training data and 83.3% in test data) was found in the sentence reading task, with CPP being proved to be playing a more crucial role in both vowel and sentence reading tasks.

Estimation of soil moisture based on Sentinel-1 SAR data: Assessment of soil moisture estimation in different vegetation condition (Sentinel-1 SAR 토양수분 산정 연구: 식생에 따른 토양수분 모의평가)

  • Cho, Seongkeun;Jeong, Jaehwan;Lee, Seulchan;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.2
    • /
    • pp.81-91
    • /
    • 2021
  • Synthetic Apreture Radar (SAR) is attracting attentions with its possibility of producing high resolution data that can be used for soil moisture estimation. High resolution soil moisture data enables more specific observation of soil moisture than existing soil moisture products from other satellites. It can also be used for studies of wildfire, landslide, and flood. The SAR based soil moisture estimation should be conducted considering vegetation, which affects backscattering signals from the SAR sensor. In this study, a SAR based soil moisture estimation at regions covered with various vegetation types on the middle area of Korea (Cropland, Grassland, Forest) is conducted. The representative backscattering model, Water Cloud Model (WCM) is used for soil moisture estimation over vegetated areas. Radar Vegetation Index (RVI) and in-situ soil moisture data are used as input factors for the model. Total 6 study areas are selected for 3 vegetation types according to land cover classification with 2 sites per each vegetation type. Soil moisture evaluation result shows that the accuracy of each site stands out in the order of grassland, forest, and cropland. Forested area shows correlation coefficient value higher than 0.5 even with the most dense vegetation, while cropland shows correlation coefficient value lower than 0.3. The proper vegetation and soil moisture conditions for SAR based soil moisture estimation are suggested through the results of the study. Future study, which utilizes additional ancillary vegetation data (vegetation height, vegetation type) is thought to be necessary.

The Association between Household Type and Self-rated Health of the Elderly in Korea: Analysis of the National Survey of Older Koreans 2017 (우리나라 노인의 가구형태와 주관적 건강상태의 관련성: 2017년 노인실태조사 자료를 이용하여)

  • Choi, Minji;Joo, Hye Jin;Kim, Taehyun;Beck, Sang Sook;Chung, Woojin
    • Health Policy and Management
    • /
    • v.32 no.2
    • /
    • pp.190-204
    • /
    • 2022
  • Background: In Korea, the population is rapidly aging, and the types of households for the elderly are also diversifying. The self-rated health of the elderly is a valuable health indicator that can comprehensively represent the overall quality of life along with physical, mental, and functional health. On the other hand, studies on the association between household type and self-rated health of the elderly are still insufficient. Thus, this study analyzed the association between household type and self-rated health by gender in Korean older adults. Methods: Using data from the analysis of the National Survey of Older Koreans 2017, 10,299 elderly people aged 65 and over were targeted. For the accuracy of the analysis data, 9,910 people were selected as the study sample by excluding proxy responses, those diagnosed with dementia, and non-response. And technical analysis, univariate analysis using the Rao-Scott chi-square test, and logical regression analysis involving survey characteristics were conducted by gender. Results: According to the adjusted model with all variables, in both men and women, the odds ratio of self-rated health 'bad' in 'couple (with ill spouse)' was significantly higher than 'couple (with spouse)'. It was 2.54 (95% confidence interval [CI], 2.05-3.15) for men and 2.11 (95% CI, 1.70-2.62) for women. In addition, the odds ratio of self-rated health 'bad' in 'living with adult children' was 1.43 (95% CI, 1.09-1.87) for men and 1.42 (95% CI, 1.15-1.75) for women, which was more significant in women than men. Conclusion: This study states that there is an association between gender, household type, and self-rated health of the elderly, and the health of a spouse and cohabitation with children have a significant effect on self-rated health. As a result, in order to improve the health status of the elderly, health promotion and health care policies involving the characteristics of the elderly's gender and household type are needed.

Text Classification Using Heterogeneous Knowledge Distillation

  • Yu, Yerin;Kim, Namgyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.10
    • /
    • pp.29-41
    • /
    • 2022
  • Recently, with the development of deep learning technology, a variety of huge models with excellent performance have been devised by pre-training massive amounts of text data. However, in order for such a model to be applied to real-life services, the inference speed must be fast and the amount of computation must be low, so the technology for model compression is attracting attention. Knowledge distillation, a representative model compression, is attracting attention as it can be used in a variety of ways as a method of transferring the knowledge already learned by the teacher model to a relatively small-sized student model. However, knowledge distillation has a limitation in that it is difficult to solve problems with low similarity to previously learned data because only knowledge necessary for solving a given problem is learned in a teacher model and knowledge distillation to a student model is performed from the same point of view. Therefore, we propose a heterogeneous knowledge distillation method in which the teacher model learns a higher-level concept rather than the knowledge required for the task that the student model needs to solve, and the teacher model distills this knowledge to the student model. In addition, through classification experiments on about 18,000 documents, we confirmed that the heterogeneous knowledge distillation method showed superior performance in all aspects of learning efficiency and accuracy compared to the traditional knowledge distillation.

An Improved Structural Reliability Analysis using Moving Least Squares Approximation (이동최소제곱근사법을 이용한 개선된 구조 신뢰성 해석)

  • Kang, Soo-Chang;Koh, Hyun-Moo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.835-842
    • /
    • 2008
  • The response surface method (RSM) is widely adopted for the structural reliability analysis because of its numerical efficiency. However, the RSM is still time consuming for large-scale applications and sometimes shows large errors in the calculation of sensitivity of reliability index with respect to random variables. Therefore, this study proposes a new RSM in which moving least squares (MLS) approximation is applied. Least squares approximation generally used in the common RSM gives equal weight to the coefficients of the response surface function (RSF). On the other hand, The MLS approximation gives higher weight to the experimental points closer to the design point, which yields the RSF more similar to the limit state at the design point. In the procedure of the proposed method, a linear RSF is constructed initially and then a quadratic RSF is formed using the axial experimental points selected from the reduced region where the design point is likely to exist. The RSF is updated successively by adding one more experimental point to the previously sampled experimental points. In order to demonstrate the effectiveness of the proposed method, mathematical problems and ten-bar truss are considered as numerical examples. As a result, the proposed method shows better accuracy and computational efficiency than the common RSM.

A Comparative Study on Prediction Performance of the Bankruptcy Prediction Models for General Contractors in Korea Construction Industry

  • Seung-Kyu Yoo;Jae-Kyu Choi;Ju-Hyung Kim;Jae-Jun Kim
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.432-438
    • /
    • 2011
  • The purpose of the present thesis is to develop bankruptcy prediction models capable of being applied to the Korean construction industry and to deduce an optimal model through comparative evaluation of final developed models. A study population was selected as general contractors in the Korean construction industry. In order to ease the sample securing and reliability of data, it was limited to general contractors receiving external audit from the government. The study samples are divided into a bankrupt company group and a non-bankrupt company group. The bankruptcy, insolvency, declaration of insolvency, workout and corporate reorganization were used as selection criteria of a bankrupt company. A company that is not included in the selection criteria of the bankrupt company group was selected as a non-bankrupt company. Accordingly, the study sample is composed of a total of 112 samples and is composed of 48 bankrupt companies and 64 non-bankrupt companies. A financial ratio was used as early predictors for development of an estimation model. A total of 90 financial ratios were used and were divided into growth, profitability, productivity and added value. The MDA (Multivariate Discriminant Analysis) model and BLRA (Binary Logistic Regression Analysis) model were used for development of bankruptcy prediction models. The MDA model is an analysis method often used in the past bankruptcy prediction literature, and the BLRA is an analysis method capable of avoiding equal variance assumption. The stepwise (MDA) and forward stepwise method (BLRA) were used for selection of predictor variables in case of model construction. Twenty two variables were finally used in MDA and BLRA models according to timing of bankruptcy. The ROC-Curve Analysis and Classification Analysis were used for analysis of prediction performance of estimation models. The correct classification rate of an individual bankruptcy prediction model is as follows: 1) one year ago before the event of bankruptcy (MDA: 83.04%, BLRA: 93.75%); 2) two years ago before the event of bankruptcy (MDA: 77.68%, BLRA: 78.57%); 3) 3 years ago before the event of bankruptcy (MDA: 84.82%, BLRA: 91.96%). The AUC (Area Under Curve) of an individual bankruptcy prediction model is as follows. : 1) one year ago before the event of bankruptcy (MDA: 0.933, BLRA: 0.978); 2) two years ago before the event of bankruptcy (MDA: 0.852, BLRA: 0.875); 3) 3 years ago before the event of bankruptcy (MDA: 0.938, BLRA: 0.975). As a result of the present research, accuracy of the BLRA model is higher than the MDA model and its prediction performance is improved.

  • PDF

Fault Detection Technique for PVDF Sensor Based on Support Vector Machine (서포트벡터머신 기반 PVDF 센서의 결함 예측 기법)

  • Seung-Wook Kim;Sang-Min Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.785-796
    • /
    • 2023
  • In this study, a methodology for real-time classification and prediction of defects that may appear in PVDF(Polyvinylidene fluoride) sensors, which are widely used for structural integrity monitoring, is proposed. The types of sensor defects appearing according to the sensor attachment environment were classified, and an impact test using an impact hammer was performed to obtain an output signal according to the defect type. In order to cleary identify the difference between the output signal according to the defect types, the time domain statistical features were extracted and a data set was constructed. Among the machine learning based classification algorithms, the learning of the acquired data set and the result were analyzed to select the most suitable algorithm for detecting sensor defect types, and among them, it was confirmed that the highest optimization was performed to show SVM(Support Vector Machine). As a result, sensor defect types were classified with an accuracy of 92.5%, which was up to 13.95% higher than other classification algorithms. It is believed that the sensor defect prediction technique proposed in this study can be used as a base technology to secure the reliability of not only PVDF sensors but also various sensors for real time structural health monitoring.

Development of machine learning prediction model for weight loss rate of chestnut (Castanea crenata) according to knife peeling process (밤의 칼날식 박피공정에 따른 머신 러닝 기반 중량감모율 예측 모델 개발)

  • Tae Hyong Kim;Ah-Na Kim;Ki Hyun Kwon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.4
    • /
    • pp.236-244
    • /
    • 2024
  • A representative problem in domestic chestnut industry is the high loss of flesh due to excessive knife peeling in order to increase the peeling rate, resulting in a decrease in production efficiency. In this study, a prediction model for weight loss rate of chestnut by stage of knife peeling process was developed as undergarment study to optimize conditions of the machine. 51 control conditions of the two-stage blade peeler used in the experiment were derived and repeated three times to obtain a total of 153 data. Machine learning(ML) models including artificial neural network (ANN) and random forest (RF) were implemented to predict the weight loss rate by chestnut peel stage (after 1st peeling, 2nd peeling, and after final discharge). The performance of the models were evaluated by calculating the values of coefficient of determination (R), normalized root mean square error (nRMSE), and mean absolute error (MAE). After all peeling stages, RF model have better prediction accuracy with higher R values and low prediction error with lower nRMSE and MAE values, compared to ANN model. The final selected RF prediction model showed excellent performance with insignificant error between the experimental and predicted values. As a result, the proposed model can be useful to set optimum condition of knife peeling for the purpose of minimizing the weight loss of domestic chestnut flesh with maximizing peeling rate.