• Title/Summary/Keyword: higher order accuracy

Search Result 791, Processing Time 0.033 seconds

An EEG-based Deep Neural Network Classification Model for Recognizing Emotion of Users in Early Phase of Design (초기설계 단계 사용자의 감정 인식을 위한 뇌파기반 딥러닝 분류모델)

  • Chang, Sun-Woo;Dong, Won-Hyeok;Jun, Han-Jong
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.12
    • /
    • pp.85-94
    • /
    • 2018
  • The purpose of this paper was to propose a model that recognizes potential users' emotional response toward design by classifying Electroencephalography(EEG). Studies in neuroscience and psychology have made an effort to recognize subjects' emotional response by analyzing EEG data. And this approach has been adopted in design since it is critical to monitor users' subjective response in the preface of design. Moreover, the building design process cannot be reversed after construction, recognizing clients' affection toward design alternatives plays important role. An experiment was conducted to record subjects' EEG data while they view their most/least liked images of small-house designs selected by them among the eight given images. After the recording, a subjective questionnaire, PANAS, was distributed to the subjects in order to describe their own affection score in quantitative way. Google TensorFlow was used to build and train the model. Dataset for model training and testing consist of feature columns for recorded EEG data and labels for the questionnaire results. After training and testing, the measured accuracy of the model was 0.975 which was higher than the other machine learning based classification methods. The proposed model may suggest one quantitative way of evaluating design alternatives. In addition, this method may support designer while designing the facilities for people like disabled or children who are not able to express their own feelings toward alternatives.

Geometrically nonlinear thermo-mechanical analysis of graphene-reinforced moving polymer nanoplates

  • Esmaeilzadeh, Mostafa;Golmakani, Mohammad Esmaeil;Kadkhodayan, Mehran;Amoozgar, Mohammadreza;Bodaghi, Mahdi
    • Advances in nano research
    • /
    • v.10 no.2
    • /
    • pp.151-163
    • /
    • 2021
  • The main target of this study is to investigate nonlinear transient responses of moving polymer nano-size plates fortified by means of Graphene Platelets (GPLs) and resting on a Winkler-Pasternak foundation under a transverse pressure force and a temperature variation. Two graphene spreading forms dispersed through the plate thickness are studied, and the Halpin-Tsai micro-mechanics model is used to obtain the effective Young's modulus. Furthermore, the rule of mixture is employed to calculate the effective mass density and Poisson's ratio. In accordance with the first order shear deformation and von Karman theory for nonlinear systems, the kinematic equations are derived, and then nonlocal strain gradient scheme is used to reflect the effects of nonlocal and strain gradient parameters on small-size objects. Afterwards, a combined approach, kinetic dynamic relaxation method accompanied by Newmark technique, is hired for solving the time-varying equation sets, and Fortran program is developed to generate the numerical results. The accuracy of the current model is verified by comparative studies with available results in the literature. Finally, a parametric study is carried out to explore the effects of GPL's weight fractions and dispersion patterns, edge conditions, softening and hardening factors, the temperature change, the velocity of moving nanoplate and elastic foundation stiffness on the dynamic response of the structure. The result illustrates that the effects of nonlocality and strain gradient parameters are more remarkable in the higher magnitudes of the nanoplate speed.

A Method of Detection of Deepfake Using Bidirectional Convolutional LSTM (Bidirectional Convolutional LSTM을 이용한 Deepfake 탐지 방법)

  • Lee, Dae-hyeon;Moon, Jong-sub
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.6
    • /
    • pp.1053-1065
    • /
    • 2020
  • With the recent development of hardware performance and artificial intelligence technology, sophisticated fake videos that are difficult to distinguish with the human's eye are increasing. Face synthesis technology using artificial intelligence is called Deepfake, and anyone with a little programming skill and deep learning knowledge can produce sophisticated fake videos using Deepfake. A number of indiscriminate fake videos has been increased significantly, which may lead to problems such as privacy violations, fake news and fraud. Therefore, it is necessary to detect fake video clips that cannot be discriminated by a human eyes. Thus, in this paper, we propose a deep-fake detection model applied with Bidirectional Convolution LSTM and Attention Module. Unlike LSTM, which considers only the forward sequential procedure, the model proposed in this paper uses the reverse order procedure. The Attention Module is used with a Convolutional neural network model to use the characteristics of each frame for extraction. Experiments have shown that the model proposed has 93.5% accuracy and AUC is up to 50% higher than the results of pre-existing studies.

Free vibration analysis of FG plates under thermal environment via a simple 4-unknown HSDT

  • Attia, Amina;Berrabah, Amina Tahar;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.41 no.6
    • /
    • pp.899-910
    • /
    • 2021
  • A 4-unknown shear deformation theory is applied to investigate the vibration of functionally graded plates under thermal environment. The plate is fabricated from a functionally graded material mixed of ceramic and metal with continuously varying material properties through the plate thickness. Three types of thermal loadings, uniform, linear and nonlinear temperature rises along the plate thickness are taken into account. The present theory contains four unknown functions as against five or more in other higher order shear deformation theories. The through-the-thickness distributions of transverse shear stresses of the plate are considered to vary parabolically and vanish at upper and lower surfaces. The present model does not require any problem dependent shear correction factor. Analytical solutions for the free vibration analysis are derived based on Fourier series that satisfy the boundary conditions (Navier's method). Benchmark solutions are firstly considered to evaluate the accuracy of the proposed model. Comparisons with the solutions available in literature revealed the good capabilities of the present model for the simulations of vibration responses of FG plates. Some parametric studies are carried out for the frequency analysis by varying the volume fraction profile and the temperature distribution across the plate thickness.

Theoretical buckling analysis of inhomogeneous plates under various thermal gradients and boundary conditions

  • Laid Lekouara;Belgacem Mamen;Abdelhakim Bouhadra;Abderahmane Menasria;Kouider Halim Benrahou;Abdelouahed Tounsi;Mohammed A. Al-Osta
    • Structural Engineering and Mechanics
    • /
    • v.86 no.4
    • /
    • pp.443-459
    • /
    • 2023
  • This study investigates the theoretical thermal buckling analyses of thick porous rectangular functionally graded (FG) plates with different geometrical boundary conditions resting on a Winkler-Pasternak elastic foundation using a new higher-order shear deformation theory (HSDT). This new theory has only four unknowns and involves indeterminate integral variables in which no shear correction factor is required. The variation of material properties across the plate's thickness is considered continuous and varied following a simple power law as a function of volume fractions of the constituents. The effect of porosity with two different types of distribution is also included. The current formulation considers the Von Karman nonlinearity, and the stability equations are developed using the virtual works principle. The thermal gradients are involved and assumed to change across the FG plate's thickness according to nonlinear, linear, and uniform distributions. The accuracy of the newly proposed theory has been validated by comparing the present results with the results obtained from the previously published theories. The effects of porosity, boundary conditions, foundation parameters, power index, plate aspect ratio, and side-to-thickness ratio on the critical buckling temperature are studied and discussed in detail.

A Taxonomy of Geriatric Hospitals Using National Health Insurance Claim Data (건강보험청구자료로 본 요양병원의 기능 유형)

  • Min Kyoung Lim;Sun-Jea Kim;Jeong-Yeon Seon
    • Korea Journal of Hospital Management
    • /
    • v.28 no.2
    • /
    • pp.9-20
    • /
    • 2023
  • Purpose: This study classified the actual functions of geriatric hospitals and examined the differences in their characteristics, in order to provide a basis for discussions on defining the functions of geriatric hospitals and how to pay for care. Methodology: This study used various administrative data such as health insurance data and long-term care insurance data. Cluster analysis was used to categorize geriatric hospitals. To examine the validity of the cluster analysis results, we conducted a discriminant analysis to calculate the accuracy of the classification. To examine cluster characteristics, we examined structure, process, and outcome indicators for each cluster. Findings: The cluster analysis identified five clusters. They were geriatric hospitals with relatively short stays for cancer patients(cluster 1; cancer patient-centered), geriatric hospitals with relatively large numbers of patients using rehabilitation services(cluster 2; rehabilitation patient-centered), geriatric hospitals with a high proportion of relatively severe elderly patients(cluster 3; severe elderly patient-centered), geriatric hospitals with a high proportion of mildly ill elderly patients with various conditions(cluster 4; mildly ill elderly patient-centered), and geriatric hospitals with a significantly higher proportion of dementia patients(cluster 5; dementia patient-centered). The largest number of geriatric hospitals were categorized in clusters 4 and 5, and the structure and process indicators for these clusters were generally lower than for the other clusters. Practical Implications: We have confirmed the existence of geriatric hospitals where the medical function, which is the original purpose of a geriatric hospital, has been weakened. It has been observed that the quality level of these geriatric hospitals is likely to be lower compared to hospitals that prioritize enhanced medical functions. Therefore, it is suggested to consider the conversion of these geriatric hospitals into long-term care facilities, and careful consideration should be given to the review of care-giver payment coverage.

  • PDF

Distance Estimation Based on RSSI and RBF Neural Network for Location-Based Service (위치 서비스를 위한 RBF 신경회로망과 RSSI 기반의 거리추정)

  • Byeong-Ro Lee;Ju-Won Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.5
    • /
    • pp.265-271
    • /
    • 2023
  • Recently, location information services are gradually expanding due to the development of information and communication technology. RSSI is widely used to extract indoor and outdoor locations. The indoor and outdoor location estimation methods using RSSI are less accurate due to the influence of radio wave paths, interference, and surrounding wireless devices. In order to improve this problem, a distance estimation method that takes into account the wireless propagation environment is necessary. Therefore, in this study, we propose a distance estimation algorithm that takes into account the radio wave environment. The proposed method estimates the distance by learning RSSI input and output considering the RBF neural network and the propagation environment. To evaluate the performance of the proposed method, the performance of estimating the location of the receiver within a range of up to 55[m] using a BLE beacon transmitter and receiver was compared with the average filter and Kalman filter. As a result, the distance estimation accuracy of the proposed method was 6.7 times higher than that of the average filter and Kalman filter. As shown in the results of this performance evaluation, if the method of this study is applied to location services, more accurate location estimation will be possible.

A Chest Compression CPR Study Performed on a Main Stretcher : Comparative study between C-step and Over the Belly

  • Gyu-Sik Shim;Song-Yi Han
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.5
    • /
    • pp.123-129
    • /
    • 2024
  • CPR is very important to paramedics, but the chest compression performed while on the move main stretcher is less accurate. The purpose of this study is to find out the difference between performing chest compression on the side of the main stretcher using C-step and on the patient's over the belly in order to increase the effect of CPR on the main object while on the move. As a result of the study, the appropriate depth (t=4.132, p=.000) and speed (t=7.177, p=.000) were shown in the group to which the C-step was applied, and the accuracy was higher (t=6.774, p=.000). In addition, it was found that there were few location defects (t=-5.197, p=.000) and too shallow errors (t=-2.948, p=.008) in the group to which the C-step was applied. In conclusion, mounting a C-step on the main stretcher seems to help improve the quality of chest compression, and it is thought that this will increase the efficiency of chest compression.

An analytical algorithm for assessing dynamic characteristics of a triple-tower double-cable suspension bridge

  • Wen-ming Zhang;Yu-peng Chen;Shi-han Wang;Xiao-fan Lu
    • Structural Engineering and Mechanics
    • /
    • v.90 no.4
    • /
    • pp.325-343
    • /
    • 2024
  • Triple-tower double-cable suspension bridges have increased confinement stiffness imposed by the main cable on the middle tower, which has bright application prospects. However, vertical bending and torsional vibrations of the double-cable and the girder are coupled in such bridges due to the hangers. In particular, the bending vibration of the towers in the longitudinal direction and torsional vibrations about the vertical axis influence the vertical bending and torsional vibrations of the stiffening girders, respectively. The conventional analytical algorithm for assessing the dynamic features of the suspension bridge is not directly applicable to this type of bridge. This study attempts to mitigate this problem by introducing an analytical algorithm for solving the triple-tower double-cable suspension bridge's natural frequencies and mode shapes. D'Alembert's principle is employed to construct the differential equations of the vertical bending and torsional vibrations of the stiffening girder continuum in each span. Vibrations of stiffening girders in each span are interrelated via the vibrations of the main cables and the bridge towers. On this basis, the natural frequencies and mode shapes are derived by separating variables. The proposed algorithm is then applied to an engineering example. The natural frequencies and mode shapes of vertical bending and torsional vibrations derived by the analytical algorithm agreed well with calculations via the finite element method. The fundamental frequency of vertical bending and first- and second-order torsion frequencies of double-cable suspension bridges are much higher than those of single-cable suspension bridges. The analytical algorithm has high computational efficiency and calculation accuracy, which can provide a reference for selecting appropriate structural parameters to meet the requirements of dynamics during the preliminary design.

Investigation of the behavior of an RC beam strengthened by external bonding of a porous P-FGM and E-FGM plate in terms of interface stresses

  • Zahira Sadoun;Riadh Bennai;Mokhtar Nebab;Mouloud Dahmane;Hassen Ait Atmane
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.4
    • /
    • pp.315-337
    • /
    • 2023
  • During the design phase, it is crucial to determine the interface stresses between the reinforcing plate and the concrete base in order to predict plate end separation failures. In this work, a simple theoretical study of interface shear stresses in beams reinforced with P-FGM and E-FGM plates subjected to an arbitrarily positioned point load, or two symmetrical point loads, was presented using the linear elastic theory. The presence of pores in the reinforcing plate distributed in several forms was also taken into account. For this purpose, we analyze the effects of porosity and its distribution shape on the interracial normal and shear stresses of an FGM beam reinforced with an FRP plate under different types of load. Comparisons of the proposed model with existing analytical solutions in the literature confirm the feasibility and accuracy of this new approach. The influence of different parameters on the interfacial behavior of reinforced concrete beams reinforced with functionally graded porous plates is further examined in this parametric study using the proposed model. From the results obtained in this study, we can say that interface stress is significantly affected by several factors, including the pores present in the reinforcing plate and their distribution shape. Additionally, we can conclude from this study that reinforcement systems with composite plates are very effective in improving the flexural response of reinforced RC beams.