• Title/Summary/Keyword: higher order accuracy

Search Result 791, Processing Time 0.029 seconds

Comparison of Acceleration-Compensating Mechanisms for Improvement of IMU-Based Orientation Determination (IMU기반 자세결정의 정확도 향상을 위한 가속도 보상 메카니즘 비교)

  • Lee, Jung Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.9
    • /
    • pp.783-790
    • /
    • 2016
  • One of the main factors related to the deterioration of estimation accuracy in inertial measurement unit (IMU)-based orientation determination is the object's acceleration. This is because accelerometer signals under accelerated motion conditions cannot be longer reference vectors along the vertical axis. In order to deal with this issue, some orientation estimation algorithms adopt acceleration-compensating mechanisms. Such mechanisms include the simple switching techniques, mechanisms with adaptive estimation of acceleration, and acceleration model-based mechanisms. This paper compares these three mechanisms in terms of estimation accuracy. From experimental results under accelerated dynamic conditions, the following can be concluded. (1) A compensating mechanism is essential for an estimation algorithm to maintain accuracy under accelerated conditions. (2) Although the simple switching mechanism is effective to some extent, the other two mechanisms showed much higher accuracies, particularly when test conditions were severe.

Spherical Harmonics Power-spectrum of Global Geopotential Field of Gaussian-bell Type

  • Cheong, Hyeong-Bin;Kong, Hae-Jin
    • Journal of the Korean earth science society
    • /
    • v.34 no.5
    • /
    • pp.393-401
    • /
    • 2013
  • Spherical harmonics power spectrum of the geopotential field of Gaussian-bell type on the sphere was investigated using integral formula that is associated with Legendre polynomials. The geopotential field of Gaussian-bell type is defined as a function of sine of angular distance from the bell's center in order to guarantee the continuity on the global domain. Since the integral-formula associated with the Legendre polynomials was represented with infinite series of polynomial, an estimation method was developed to make the procedure computationally efficient while preserving the accuracy. The spherical harmonics power spectrum was shown to vary significantly depending on the scale parameter of the Gaussian bell. Due to the accurate procedure of the new method, the power (degree variance) spanning over orders that were far higher than machine roundoff was well explored. When the scale parameter (or width) of the Gaussian bell is large, the spectrum drops sharply with the total wavenumber. On the other hand, in case of small scale parameter the spectrum tends to be flat, showing very slow decaying with the total wavenumber. The accuracy of the new method was compared with theoretical values for various scale parameters. The new method was found advantageous over discrete numerical methods, such as Gaussian quadrature and Fourier method, in that it can produce the power spectrum with accuracy and computational efficiency for all range of total wavenumber. The results of present study help to determine the allowable maximum scale parameter of the geopotential field when a Gaussian-bell type is adopted as a localized function.

An Efficient Method to Find Accurate Spot-matching Patterns in Protein 2-DE Image Analysis (단백질 2-DE 이미지 분석에서 정확한 스팟 매칭 패턴 검색을 위한 효과적인 방법)

  • Jin, Yan-Hua;Lee, Won-Suk
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.5
    • /
    • pp.551-555
    • /
    • 2010
  • In protein 2-DE image analysis, the accuracy of spot-matching operation which identifies the spot of the same protein in each 2-DE gel image is intensively influenced by the errors caused by the various experimental conditions. This paper proposes an efficient method to find more accurate spot-matching patterns based on multiple reference gel images in spot-matching pattern analysis in protein 2-DE image analysis. Additionally, in order to improve the reduce the execution time which is increased exponentially along with the increasing number of gel images, a "partition then extension" framework is used to find spot-matching pattern of long length and of higher accuracy. In the experiments on real 2-DE images of human liver tissue are used to confirm the accuracy and the efficiency of the proposed algorithm.

Accuracy analysis on the temperature measurement with thermistor (인공위성용 서미스터의 온도측정 정확도 분석)

  • Suk, Byong-Suk;Lee, Yun-Ki;Lee, Na-Young
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.115-120
    • /
    • 2008
  • The thermistors and AD590 are widely used for temperature measurement in space application. The resistance of thermistor will vary according to the temperature variation therefore the external voltage or current stimulus signal have to be provided to measure resistance variation. Recently high resolution electro optic camera system of satellite requires tight thermal control of the camera structure to minimize the thermal structural distortion which can affects the image quality. In order to achieve $1^{\circ}$(deg C) thermal control requirement, the accuracy of temperature measurement have to be higher than $0.3^{\circ}$(deg C). In this paper, the accuracy of temperature measurement using thermistors is estimated and analyzed.

  • PDF

Accessing the Clustering of TNM Stages on Survival Analysis of Lung Cancer Patient (폐암환자 생존분석에 대한 TNM 병기 군집분석 평가)

  • Choi, Chulwoong;Kim, Kyungbaek
    • Smart Media Journal
    • /
    • v.9 no.4
    • /
    • pp.126-133
    • /
    • 2020
  • The treatment policy and prognosis are determined based on the final stage of lung cancer patients. The final stage of lung cancer patients is determined based on the T, N, and M stage classification table provided by the American Cancer Society (AJCC). However, the final stage of AJCC has limitations in its use for various fields such as patient treatment, prognosis and survival days prediction. In this paper, clustering algorithm which is one of non-supervised learning algorithms was assessed in order to check whether using only T, N, M stages with a data science method is effective for classifying the group of patients in the aspect of survival days. The final stage groups and T, N, M stage clustering groups of lung cancer patients were compared by using the cox proportional hazard model. It is confirmed that the accuracy of prediction of survival days with only T, N, M stages becomes higher than the accuracy with the final stages of patients. Especially, the accuracy of prediction of survival days with clustering of T, N, M stages improves when more or less clusters are analyzed than the seven clusters which is same to the number of final stage of AJCC.

Mutual Perceptions among Clients, Agencies, and Consumers on the Evaluation of Ad Creativity: Extending Application of the Co-Orientation Model (광고 창의성 평가에 대한 광고주, 광고 제작자, 소비자 간의 상호인식 연구: 상호지향성 모델의 확장 적용)

  • Kim, Bong-Chul;Choi, Myung-Il;Lee, Jin-U
    • (The) Korean Journal of Advertising
    • /
    • v.25 no.1
    • /
    • pp.179-201
    • /
    • 2014
  • This study explored mutual perceptions among clients, agencies, and consumers on the evaluation of ad creativity applying the co-orientation model. In order to investigate agreement, congruence, accuracy among three groups, they exposed to real commercials as stimuli and evaluated ad creativity of them in terms of four dimensions, such as originality, appropriateness, clarity, and relevance. Results indicated that agreement between agencies and consumers is relatively high, whereas one between clients and agencies is relatively low. Also, clients show relatively higher level of congruence, but agencies have relatively lower level of one. Accuracy between agencies' evaluation of ad creativity and clients' perception of agencies' view on ad creativity, and between consumers' evaluation of ad creativity and clients' perception of consumers' view on ad creativity would be relatively high. On the other hand, accuracy between clients' evaluation of ad creativity and agencies' perception of clients' view on ad creativity would be relatively low. Results showed that there is a need clients and agencies to consider on consumers' viewpoints on ad creativity.

Item-Based Collaborative Filtering Recommendation Technique Using Product Review Sentiment Analysis (상품 리뷰 감성분석을 이용한 아이템 기반 협업 필터링 추천 기법)

  • Yun, So-Young;Yoon, Sung-Dae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.8
    • /
    • pp.970-977
    • /
    • 2020
  • The collaborative filtering recommendation technique has been the most widely used since the beginning of e-commerce companies introducing the recommendation system. As the online purchase of products or contents became an ordinary thing, however, recommendation simply applying purchasers' ratings led to the problem of low accuracy in recommendation. To improve the accuracy of recommendation, in this paper suggests the method of collaborative filtering that analyses product reviews and uses them as a weighted value. The proposed method refines product reviews with text mining to extract features and conducts sentiment analysis to draw a sentiment score. In order to recommend better items to user, sentiment weight is used to calculate the predicted values. The experiment results show that higher accuracy can be gained in the proposed method than the traditional collaborative filtering.

Forecasting Baltic Dry Index by Implementing Time-Series Decomposition and Data Augmentation Techniques (시계열 분해 및 데이터 증강 기법 활용 건화물운임지수 예측)

  • Han, Min Soo;Yu, Song Jin
    • Journal of Korean Society for Quality Management
    • /
    • v.50 no.4
    • /
    • pp.701-716
    • /
    • 2022
  • Purpose: This study aims to predict the dry cargo transportation market economy. The subject of this study is the BDI (Baltic Dry Index) time-series, an index representing the dry cargo transport market. Methods: In order to increase the accuracy of the BDI time-series, we have pre-processed the original time-series via time-series decomposition and data augmentation techniques and have used them for ANN learning. The ANN algorithms used are Multi-Layer Perceptron (MLP), Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM) to compare and analyze the case of learning and predicting by applying time-series decomposition and data augmentation techniques. The forecast period aims to make short-term predictions at the time of t+1. The period to be studied is from '22. 01. 07 to '22. 08. 26. Results: Only for the case of the MAPE (Mean Absolute Percentage Error) indicator, all ANN models used in the research has resulted in higher accuracy (1.422% on average) in multivariate prediction. Although it is not a remarkable improvement in prediction accuracy compared to uni-variate prediction results, it can be said that the improvement in ANN prediction performance has been achieved by utilizing time-series decomposition and data augmentation techniques that were significant and targeted throughout this study. Conclusion: Nevertheless, due to the nature of ANN, additional performance improvements can be expected according to the adjustment of the hyper-parameter. Therefore, it is necessary to try various applications of multiple learning algorithms and ANN optimization techniques. Such an approach would help solve problems with a small number of available data, such as the rapidly changing business environment or the current shipping market.

A Study to Improve the Classification Accuracy of Mosaic Image over Korean Peninsula: Using PCA and RGB Indices (한반도 모자이크 영상의 분류 정확도 향상 기법 연구: PCA 기법과 RGB 지수를 활용하여)

  • Moon, Jiyoon;Lee, Kwangjae
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_4
    • /
    • pp.1945-1953
    • /
    • 2022
  • Korea Aerospace Research Institute produces mosaic images of the Korean Peninsula every year to promote the use of satellite images and provides them to users in the public sector. However, since the pan-sharpening and color balancing methodologies are applied during the mosaic image processing, the original spectral information is distorted. In addition, there is a limit to analyze using mosaic images as mosaic images provide only Red, Green and Blue bands excluding Near Infrared (NIR) band. Therefore, in order to compensate for these limitations, this study applied the Principal Component Analysis (PCA) technique and indices extracted from R, G, B bands together for image classification and compared the classification results. As a result of the analysis, the accuracy of the mosaic image classification result was about 67.51%, while the accuracy of the image classification result using both PCA and RGB indices was about 75.86%, confirming that the accuracy of the image classification result can be improved. As a result of comparing the PCA and the RGB indices, the accuracy of the image classification result was about 64.10% and 74.05% respectively. Through this, it was confirmed that the classification accuracy using the RGB indices was higher among the two techniques, and implications were derived that it was important to use high quality reference or supplementary data. In the future, additional indices and techniques are needed to improve the classification and analysis results of mosaic images, and related research is expected to increase the utilization of images that provide only R, G, B or limited spectral information.

Prediction of Future Milk Yield with Random Regression Model Using Test-day Records in Holstein Cows

  • Park, Byoungho;Lee, Deukhwan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.7
    • /
    • pp.915-921
    • /
    • 2006
  • Various random regression models with different order of Legendre polynomials for permanent environmental and genetic effects were constructed to predict future milk yield of Holstein cows in Korea. A total of 257,908 test-day (TD) milk yield records from a total of 28,135 cows belonging to 1,090 herds were considered for estimating (co)variance of the random covariate coefficients using an expectation-maximization REML algorithm in an animal mixed model. The variances did not change much between the models, having different order of Legendre polynomial, but a decreasing trend was observed with increase in the order of Legendre polynomial in the model. The R-squared value of the model increased and the residual variance reduced with the increase in order of Legendre polynomial in the model. Therefore, a model with $5^{th}$ order of Legendre polynomial was considered for predicting future milk yield. For predicting the future milk yield of cows, 132,771 TD records from 28,135 cows were randomly selected from the above data by way of preceding partial TD record, and then future milk yields were estimated using incomplete records from each cow randomly retained. Results suggested that we could predict the next four months milk yield with an error deviation of 4 kg. The correlation of more than 70% between predicted and observed values was estimated for the next four months milk yield. Even using only 3 TD records of some cows, the average milk yield of Korean Holstein cows would be predicted with high accuracy if compared with observed milk yield. Persistency of each cow was estimated which might be useful for selecting the cows with higher persistency. The results of the present study suggested the use of a $5^{th}$ order Legendre polynomial to predict the future milk yield of each cow.