• Title/Summary/Keyword: higher heating value

Search Result 345, Processing Time 0.025 seconds

Physico-Chemical Characteristics of Municipal Solid Waste Generated from T City and Leaching Characteristics of the Incineration Ash (T시 생활폐기물의 물리화학적 특성 및 소각재 용출특성)

  • Park, Joon-Seok
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.2
    • /
    • pp.84-92
    • /
    • 2010
  • This research was conducted to investigate physico-chemical characteristics of municipal solid waste (MSW) generated from T City, Gangwon-do and leaching characteristics of the incineration ash. From the results, bulk density of MSW in T city was $231kg/m^3$. Combustible and incombustible components were in 94.0% and 6.0%, respectively. Food waste and papers in combustible component occupied 32.3% and 41.2%. Water, volatile solids, and ash content were 41.3%, 50.5%, and 8.2%. C, H, O, N, S, and Cl showed 51.4%, 6.3%, 26.7%, 1.1%, 0.2%, 0.5%, respectively. Low heating value (2,704 kcal/kg) of T city was similar to 2,764 kcal/kg of Chuncheon and was 1,000 kcal/kg higher than 1,467~1,584 kcal/kg of the past Kuro-gu and Koyang city. The specification of leaching characteristics of the incineration ash were within the Korean regulation standard.

Heat Penetration Characteristics and Keeping Quality of Retort Pouched Curry (레토르트 파우치 카레의 전열특성 및 품질안정성)

  • Koo, Bon-Youl;Park, Seong-Joon;Byeon, You-Ryang;Son, Se-Hyeong
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.63-68
    • /
    • 1993
  • Heat penetration characteristics of retort pouched curry were studied to determine optimal sterilization conditions. Heating curve of retort pouched curry showed a simple logarithmic curve. The $f_h$ value (min.) of solid part in retort pouched curry was 1 min. higher than that of liquid part. $f_h$ value (min.) and $j_h$ value (heating lag factor) ranged from 8.3 min. to 12 min. and 1.0 to 1.17 respectively with increasing the ratio of solid to liquid and viscosity. $f_h$ value (min.) and $j_h$ value were significantly increased from 7.4 min. to 12.6 min. and 1.0 to 1.14 respectively with increasing thickness of the pouch from 11 to 15 mm. The low and medium volatile aroma components of retort pouched curry decreased during sterilization, which increased the high volatile aroma components. The retort pouched curry processed at $120^{\circ}C$, for 24 min. with $F_o$, value of $8{\sim}9$ could keep up a desirable quality without any remarkable deterioration.

  • PDF

Effect of Color Developing by Alkali and Heating of Cotton Fabrics Dyed with Persimmon Extract (알칼리와 열처리에 의한 면직물의 감즙염색 발색효과)

  • Kim, Ok-Soo;Jang, Jeong-Dae
    • Fashion & Textile Research Journal
    • /
    • v.13 no.6
    • /
    • pp.972-982
    • /
    • 2011
  • The purpose of this study is to improve the method of color developing with alkali solution as a promotor of color developing for feasible use. Cotton fabric was dyed with persimmon extract ranged with 0~3% alkali component with 5 types of strong to mild alkali solution. Heat treatment for color developing was applied to fabric dyed with persimmon extract and alkali mixing solution. Tests were carried out to analyze the change of surface color, ${\Delta},Ea^*b^*$, and water repellent of the dyed cotton fabric. The alkali mixing sample showed higher ${\Delta},Ea^*b^*$ value than control one without alkali mixing on the base of dyed fabric due to high color developing by alkali in the initial step of dyeing process. As alkali concentration increased, deeper dark color appeared on the fabric. The fabric color was changed to more dark in the application of sodium hydroxide, sodium carbonate, potassium carbonate in the initial step of dyeing process but color was not changed by increased heating time. However, the fabric showed a slight dark color with sodium acetate and more color change than that of the fabric dyed with persimmon extract without alkali. Therefore, sodium acetate seemed to a suitable promotor for color developing in persimmon extract dyeing. Property of water repellent was showed after color developing by heating with low concentration of alkali treatment.

Isolation and Identification of Cholesterol Oxidation products in heated tallow by TLC (TLC를 이용한 가열우지중 콜레스테롤 산화생성물의 분리 및 확인)

  • 장영상;양주홍
    • Food Science and Preservation
    • /
    • v.8 no.3
    • /
    • pp.338-344
    • /
    • 2001
  • The oxidative stability of cholesterol in tallow heated at different frying temperatures (130$\^{C}$, 150$\^{C}$, and 180$\^{C}$) was studied by identifying cholesterol oxides by thin layer chromatography(TLC). And fatty acid compositions in tallow heated were also measured and compared with cholesterol oxides. Unsaturated fatty acid contents slightly decreased as the heating time increased, whereas saturated fatty acid contents increased This phenomenon became excessive especially by heating to higher temperature. It was found that RF value and spot color of the nonsaponifiable lipids from tallow heated on TLC analysis accorded with the synthetic cholesterol oxides in this experiment. Four kinds of cholesterol oxides were detected in tallow heated for 24 hours at three different temperatures. The oxides were identified as 7-$\alpha$-hydroxycholesterol, 7-$\beta$-hydroxycholesterol, 7-ketocholesterol and cholesterol epoxide. It was found that there was a little difference in oxidative pattern of cholesterol between several heating temperatures.

  • PDF

A Comparative Experiment on the Emission Gas Characteristics of Domestic RDF (국내산(國內産) RDF의 배출(排出)가스 특성(特性) 비교실험(比較實驗))

  • Park, Myung-Ho
    • Resources Recycling
    • /
    • v.16 no.6
    • /
    • pp.46-51
    • /
    • 2007
  • This study aimed at developing high-efficiency RDF(refuse derived fuels) fuel in order to use RDF energy rationally and to recycle industrial product. As most studies in this area are concentrated in large combustion apparatuses such as kilns, but this study was focused on the small-sized heating systems, applying them directly to grate type boiler which has a heating capacity of $66{\sim}132m^2$. The different kinds of fuel are experimented including RDF. Coke and Waste Tire. First, for this, we experimented and analyzed RDF to see the change in its mass and heating value. Also, four kinds of exhaust gas are sampled by gas analyzer including CO, $CO_2$, NO and $NO_2$ at different temperature. As a result, the levels of CO concentration of RDF are higher than these of coke and waste tire. But, the levels of NO, $CO_2$ and $SO_2$ concentration of RDF and coke were lower then the levels when waste tire is burned.

Variation of Supersonic Aircraft Skin Temperature under Different Mach number and Structure (비행마하수와 형상에 따른 초음속 항공기 표면온도 변화)

  • Cha, Jong Hyun;Kim, Taehwan;Bae, Ji-Yeul;Kim, Taeil;Jung, Daeyoon;Cho, Hyung Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.463-470
    • /
    • 2014
  • Stealth technology of combat aircraft is most significant capability in recent air battlefield. As the detector of IR missiles is being developed, IR stealth capability which is evaluated by IR signature level become more important than it was in previous generation. Among IR signature of aircraft from various sources, aerodynamic heating dominates in long-wavelength IR spectrum of $8{\sim}12{\mu}m$. Skin temperature change by aerodynamic heating which is derived by effects of Mach number and structure. The 4th and 5th generation aircraft are selected for calculation of the skin temperature, and its height and velocity in numerical conditions are 10,000 m and Ma 0.9~1.9 respectively. Aircraft skin temperature is calculated by computing convection of fluid and conduction, convection and radiation of surface. As the aircraft accelerates to higher Mach number, maximum skin temperature increases more rapidly than average temperature and temperature distribution changes in more sharp, interactive ways. The 4th generation aircraft whose shape is more complex than that of the 5th generation aircraft have complicated temperature distribution. On the other hand, the 5th generation aircraft whose shape is relatively simple shows plain temperature distribution and lower skin temperature in terms of both average and maximum value.

Evaluation of Building Envelope Performance of a Dry Exterior Insulation System Using Truss Insulation Frame (트러스 단열 프레임을 이용한 건식 외단열 시스템의 외피 종합 성능 평가)

  • Song, Jin-Hee;Lee, Dong-Yun;Shin, Dong-Il;Jun, Hyun-Do;Park, Cheol-Yong;Kim, Sang-Kyun
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.6
    • /
    • pp.153-164
    • /
    • 2019
  • The presence of thermal bridges in a building envelope cause additional heat loss which increases the heating energy. Given that a higher building insulation performance is required in these cases, the heat loss via thermal bridges is a high proportion of the total heat energy consumption of a building. For the dry exterior insulation system that uses mullions and transoms to fix insulation and exterior materials such as stone and metal sheet, the occurrence of thermal bridges at mullions and transoms is one of the main reasons for heat loss. In this study, a dry exterior insulation system using the truss insulation frame (TIF) was proposed as an alternative to metal mullions. To evaluate the building envelope performance, structural, air-leakage, water-leakage, fire-resistance, thermal, and condensation risk tests were conducted. In addition, the annual energy consumption associated with heating and cooling was calculated, including the linear thermal transmittance of the thermal bridges. As a result, the dry exterior insulation system using TIF achieved the allowable value for all tests. It was also determined that the annual heating load of a building was reduced by 36.7 % when the TIF dry exterior insulation system was used, relative to the dry exterior insulation system using steel pipes without additional insulations.

Effect of Heating Temperature and Time on Quality Characteristics of Baked Egg (가열온도 및 시간이 구운 계란의 품질 특성에 미치는 영향)

  • Kang, Geunho;Seong, Pil-Nam;Cho, Soohyun;Ham, Hyoung-Joo;Kang, Sun Moon;Park, Kyoungmi;Park, Beom-Young
    • Korean Journal of Poultry Science
    • /
    • v.42 no.1
    • /
    • pp.9-13
    • /
    • 2015
  • This study was conducted to investigate the effect of heating temperature and time on the quality of baked egg. Eggs were baked at various temperatures (80, 90, 100, 105 and $110^{\circ}C$) for different times (5, 6, 7 and 8 h) using a commercial heater. Our results revealed that heating loss in the $110^{\circ}C$ treatment was significantly (p<0.05) higher than those of other remaining treatments. The pH value of egg white in the 5 h treatment was significantly (p<0.05) higher compared to those of other treatments. While, no significant differences in pH values of egg yolks occurred among the treatments. Regarding the texture, hardness and cohesiveness values were not significantly different among the treatments. Regarding color, the $110^{\circ}C$ treatment samples had lower lightness value whereas had higher redness and yellowness values compared to the $105^{\circ}C$ treatments (p<0.05). Moisture content of baked eggs showed an decreased tendency as increasing the heating temperature and time. These results suggested that the proper conditions were 8 hours for total baking time including more than 5 h at $105^{\circ}C$ or 2 h at $110^{\circ}C$.

A Study on the Stability and Sludge Energy Efficiency Evaluation of Torrefied Wood Flour Natural Material Based Coagulant (반탄화목분 천연재료 혼합응집제의 안정성 및 슬러지 에너지화 가능성 평가에 관한 연구)

  • PARK, Hae Keum;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.3
    • /
    • pp.271-282
    • /
    • 2020
  • Sewage treatment plants are social infrastructure of cities. The sewage distribution rate in Korea is reaching 94% based on the sewage statistics based in the year of 2017. In Korean sewage treatment plants, use of PAC (Poly Aluminum Chloride) accounts for 58%. It contains a large amount of impurities (heavy metal) according to the quality standards, however, there have been insufficient efforts to reinforce the standards or technically improve the quality, which resulted in secondary pollution problems from injecting excessive coagulant. Also, the increase in the use of chemicals is leading to the increases in the annual amount of sewage sludge generated in 2017 and the need to reuse sludge. As such, this study aims to verify the possibility of reusing sludge by evaluating the stability of heavy metals based on the injection of coagulant mixture during water treatment which uses the torrefield wood powder and natural materials, and evaluating the sedimentation and heating value of sewage sludge. As a result of analyzing heavy metals (Cr, Fe, Zn, Cu, Cd, As, Pb, and Ni) from the coagulant mixture and PAC (10%), Cr, Cd, Pb, Ni, and Hg were not detected. As for Zn, while its concentration notified in the quality standards for drinking water is 3 mg/L, only a small amount of 0.007 mg/L was detected in the coagulant mixture. Maximum amounts of over double amounts of Fe, Cu, and As were found with PAC (10%) compared to the coagulant mixture. Also, an analysis of sludge sedimentation found that the coagulant mixture showed a better performance of up to double the speed of the conventional coagulant, PAC (10%). The dry-basis lower heating value of sewage sludge produced by injecting the coagulant mixture was 3,378 kcal/kg, while that of sewage sludge generated due to PAC (10%) was 3,171 kcal/kg; although both coagulants met the requirements to be used as auxiliary fuel at thermal power plants, the coagulant mixture developed in this study could secure heating values 200 kal/kg higher than the counterpart. Therefore, utilization of the coagulant mixture for water treatment rather than PAC (10%) is expected to be more environmentally stable and effective, as it helps generating sludge with better stability against heavy metals, having a faster sludge sedimentation, and higher heating value.

Analysis of Chemical Compositions and Energy Contents of Different Parts of Yellow Poplar for Development of Bioenergy Technology

  • Myeong, Soo-Jeong;Han, Sim-Hee;Shin, Soo-Jeong
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.5
    • /
    • pp.706-710
    • /
    • 2010
  • Understanding of chemical composition and energy contents in tree is important to develope strategies of renewable energy policy to cope with climate change. Residual biomass as renewable energy source was evaluated and focused on the bark-containing branches. Chemical analysis studies were conducted for different part of yellow poplar (Liriodendron tulipifera), which were partitioned to inner bark, outer bark, small branches, medium branches, big branches and trunk. The variations in hydrophobic extractives, hydrophilic extractives, lignin, carbohydrate compositions, energy contents (higher heating value) and the ash content were determined. The inner and outer bark had higher ash content, hydrophobic and hydrophilic extractives content, and higher energy content than those of tree trunk. Polysaccharides content in inner and outer bark was quite lower than those of stem or branches. Based on the energy content of residual biomass, replacement of fossil fuel and greenhouse gas emission abatement were calculated.