• 제목/요약/키워드: high-throughput screening

검색결과 182건 처리시간 0.023초

Genotoxicity Study of sophoricoside derivatives in mammalian cells system

  • Yun, Hye-Jung;Kim, Youn-Jung;Kim, Eun-Young;Jung, Sang-Hun;Kim, Youngsoo;Kim, Mi-Kyung;Lee, Seung-Ho;Ryu, Jae-Chun
    • 한국환경독성학회:학술대회논문집
    • /
    • 한국환경독성학회 2003년도 춘계학술대회
    • /
    • pp.185-185
    • /
    • 2003
  • To develope the novel anti-allergic drug, many sophoricoside derivatives were synthesized. Among these derivatives, JSH-II-3, JSH-Ⅵ-3, JSH-Ⅶ-3, and JSH-Ⅷ-3 were selected and subjected to high throughput toxicity screening (HTTS) because they revealed strong IL-5 inhibitory activity and limitation of quantity. Mouse lymphoma thymidine kinase (tk$\^$+/-/) gene assay (MOLY) and single cell gel electrophoresis (Comet) assay in mammalian cells were used as HTTS tool in our laboratory. In MOLY assay, JSH-Ⅶ-3 at 50 ∼ 6 $\mu\textrm{g}$/ml concentrations was not shown significant mutagenic effect in the absence and presence of S-9 metabolic activation system. However, the concentration of ISH-II-3, 38 $\mu\textrm{g}$/ml, induced increased mutation frequency (MF) in the presence of S-9 metabolic activation system. Also in comet assay, DNA damage was not observed in JSH-Ⅵ-3 and JSH-Ⅶ-3, wherase concentration of 32.8 $\mu\textrm{g}$/ml in JSH-II-3 and 13.9 $\mu\textrm{g}$/ml in JSH-Ⅶ-3 were induced DNA damage in the absence of S-9 metabolic activation system. Therefore, we suggest that JSH-Ⅵ-3 and JSH-Ⅶ-3 have no genotoxic effects but JSH-II-3 and JSH-Ⅷ-3 induce some mutagenicity and DNA strand breaks in mouse lymphoma cell line used this study.

  • PDF

Noninvasive prenatal test for the pregnancy with Turner syndrome mosaicism 45, X/47, XXX: A case report

  • Kim, Ji Hye;Lee, Gun Ho;Cha, Dong Hyun;Cho, Eun-Hae;Jung, Yong Wook
    • Journal of Genetic Medicine
    • /
    • 제12권2호
    • /
    • pp.118-122
    • /
    • 2015
  • Noninvasive prenatal test (NIPT) is a novel screening method for the diagnosis of fetal chromosomal aneuploidies. NIPT is based on technology that detects cell-free fetal DNA in maternal plasma and analyzes it with massively parallel sequencing technology to determine whether the fetus is at risk of trisomy 21, trisomy 18, trisomy 13 or sex chromosome abnormalities (SCAs). NIPT has been reported to have sensitivity of 99% and a false positive rate of less than 1% for detecting trisomy 21 and trisomy 18. Although extension of the application of NIPT to other SCAs has been attempted, there are concerns in extending NIPT to SCAs because of maternal or fetal mosaicism, undetected maternal SCAs, and multiple pregnancies. Recently, we assessed a pregnancy with the rare Turner syndrome mosaicism 45, X/47, XXX, which was reported as 45, X with NIPT. We present the case here and briefly review the current literatures on NIPT in testing for fetal monosomy X. To the best of our knowledge, this is the first report of the 45, X/47, XXX mosaicism in Korea to be reported as 45, X by NIPT with whole genome sequencing. This case report will provide valuable information for counseling women who want to undergo NIPT.

Purification and Characterization of HCV RNA-dependent RNA Polymerase from Korean Genotype 1b Isolate: Implications for Discovery of HCV Polymerase Inhibitors

  • Kim, Jeong-Min;Lee, Mi-Kyoung;Kim, Yong-Zu
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권2호
    • /
    • pp.285-291
    • /
    • 2005
  • The nonstructural protein 5B (NS5B) of hepatitis C virus (HCV) is the viral RNA-dependent RNA polymerase (RdRp), which is the essential catalytic enzyme for the viral replication and is an appealing target for the development of new therapeutic agents against HCV infection. A small amount of serum from a single patient with hepatitis C was used to get the genome of a Korean HCV isolate. Sequence analysis of NS5B 1701 nucleotides showed the genotype of a Korean isolate to be subtype 1b. The soluble recombinant HCV NS5B polymerase lacking the C-terminal 24 amino acids was expressed and purified to homogeneity. With the highly purified NS5B protein, we established in vitro systems for RdRp activity to identify potential polymerase inhibitors. The rhodanine family compounds were found to be potent and specific inhibitors of NS5B from high throughput screening (HTS) assay utilizing the scintillation proximity assay (SPA) system. The binding mode of an inhibitor was analyzed by measuring various kinetic parameters. Lineweaver-Burk plots of the inhibitor suggested it binds not to the active site of NS5B polymerase, but to an allosteric site of the enzyme. The activity of NS5B in in vitro polymerase reactions with homopolymeric RNA requires interaction with multiple substrates that include a template/primer and ribonucleotide triphosphate. Steady-state kinetic parameter, such as Km, was determined for the ribonucleotide triphosphate. One of compounds found interacts directly with the viral polymerase and inhibits RNA synthesis in a manner noncompetitively with respect to UTP. Furthermore, we also investigated the ability of the compound to inhibit NS5B-directed viral RNA replication using the Huh7 cell-based HCV replicon system. The investigation is potentially very useful for the utility of such compounds as anti-hepatitic agents.

In Vitro Infectivity Assessment by Drug Susceptibility Comparison of Recombinant Leishmania major Expressing Enhanced Green Fluorescent Protein or EGFP-Luciferase Fused Genes with Wild-Type Parasite

  • Sadeghi, Somayeh;Seyed, Negar;Etemadzadeh, Mohammad-Hossein;Abediankenari, Saeid;Rafati, Sima;Taheri, Tahereh
    • Parasites, Hosts and Diseases
    • /
    • 제53권4호
    • /
    • pp.385-394
    • /
    • 2015
  • Leishmaniasis is a worldwide uncontrolled parasitic disease due to the lack of effective drug and vaccine. To speed up effective drug development, we need powerful methods to rapidly assess drug effectiveness against the intracellular form of Leishmania in high throughput assays. Reporter gene technology has proven to be an excellent tool for drug screening in vitro. The effects of reporter proteins on parasite infectivity should be identified both in vitro and in vivo. In this research, we initially compared the infectivity rate of recombinant Leishmania major expressing stably enhanced green fluorescent protein (EGFP) alone or EGFP-luciferase (EGFP-LUC) with the wild-type strain. Next, we evaluated the sensitivity of these parasites to amphotericin B (AmB) as a standard drug in 2 parasitic phases, promastigote and amastigote. This comparison was made by MTT and nitric oxide (NO) assay and by quantifying the specific signals derived from reporter genes like EGFP intensity and luciferase activity. To study the amastigote form, both B10R and THP-1 macrophage cell lines were infected in the stationary phase and were exposed to AmB at different time points. Our results clearly revealed that the 3 parasite lines had similar in vitro infectivity rates with comparable parasite-induced levels of NO following interferon-${\gamma}$/lipopolysaccharide induction. Based on our results we proposed the more reporter gene, the faster and more sensitive evaluation of the drug efficiency.

Discrimination of cultivation ages and cultivars of ginseng leaves using Fourier transform infrared spectroscopy combined with multivariate analysis

  • Kwon, Yong-Kook;Ahn, Myung Suk;Park, Jong Suk;Liu, Jang Ryol;In, Dong Su;Min, Byung Whan;Kim, Suk Weon
    • Journal of Ginseng Research
    • /
    • 제38권1호
    • /
    • pp.52-58
    • /
    • 2014
  • To determine whether Fourier transform (FT)-IR spectral analysis combined with multivariate analysis of whole-cell extracts from ginseng leaves can be applied as a high-throughput discrimination system of cultivation ages and cultivars, a total of total 480 leaf samples belonging to 12 categories corresponding to four different cultivars (Yunpung, Kumpung, Chunpung, and an open-pollinated variety) and three different cultivation ages (1 yr, 2 yr, and 3 yr) were subjected to FT-IR. The spectral data were analyzed by principal component analysis and partial least squares-discriminant analysis. A dendrogram based on hierarchical clustering analysis of the FT-IR spectral data on ginseng leaves showed that leaf samples were initially segregated into three groups in a cultivation age-dependent manner. Then, within the same cultivation age group, leaf samples were clustered into four subgroups in a cultivar-dependent manner. The overall prediction accuracy for discrimination of cultivars and cultivation ages was 94.8% in a cross-validation test. These results clearly show that the FT-IR spectra combined with multivariate analysis from ginseng leaves can be applied as an alternative tool for discriminating of ginseng cultivars and cultivation ages. Therefore, we suggest that this result could be used as a rapid and reliable F1 hybrid seed-screening tool for accelerating the conventional breeding of ginseng.

Enhancement of 1,3-Dihydroxyacetone Production from Gluconobacter oxydans by Combined Mutagenesis

  • Lin, Xi;Liu, Sha;Xie, Guangrong;Chen, Jing;Li, Penghua;Chen, Jianhua
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권11호
    • /
    • pp.1908-1917
    • /
    • 2016
  • Wild strain L-6 was subjected to combined mutagenesis, including UV irradiation, atmospheric and room temperature plasma, and ion beam implantation, to increase the yield of 1,3-dihydroxyacetone (DHA). With application of a high-throughput screening method, mutant Gluconobacter oxydans I-2-239 with a DHA productivity of 103.5 g/l in flask-shake fermentation was finally obtained with the starting glycerol concentration of 120 g/l, which was 115.7% higher than the wild strain. The cultivation time also decreased from 54 h to 36 h. Compared with the wild strain, a dramatic increase in enzyme activity was observed for the mutant strain, although the increase in biomass was limited. DNA and amino acid sequence alignment revealed 11 nucleotide substitutions and 10 amino acid substitutions between the sldAB of strains L-6 and I-2-239. Simulation of the 3-D structure and prediction of active site residues and PQQ binding site residues suggested that these mutations were mainly related to PQQ binding, which was speculated to be favorable for the catalyzing capacity of glycerol dehydrogenase. RT-qPCR assay indicated that the transcription levels of sldA and sldB in the mutant strain were respectively 4.8-fold and 5.4-fold higher than that in the wild strain, suggesting another possible reason for the increased DHA productivity of the mutant strain.

Novel Discovery of LINE-1 in a Korean Individual by a Target Enrichment Method

  • Shin, Wonseok;Mun, Seyoung;Kim, Junse;Lee, Wooseok;Park, Dong-Guk;Choi, Seungkyu;Lee, Tae Yoon;Cha, Seunghee;Han, Kyudong
    • Molecules and Cells
    • /
    • 제42권1호
    • /
    • pp.87-95
    • /
    • 2019
  • Long interspersed element-1 (LINE-1 or L1) is an autonomous retrotransposon, which is capable of inserting into a new region of genome. Previous studies have reported that these elements lead to genomic variations and altered functions by affecting gene expression and genetic networks. Mounting evidence strongly indicates that genetic diseases or various cancers can occur as a result of retrotransposition events that involve L1s. Therefore, the development of methodologies to study the structural variations and interpersonal insertion polymorphisms by L1 element-associated changes in an individual genome is invaluable. In this study, we applied a systematic approach to identify human-specific L1s (i.e., L1Hs) through the bioinformatics analysis of high-throughput next-generation sequencing data. We identified 525 candidates that could be inferred to carry non-reference L1Hs in a Korean individual genome (KPGP9). Among them, we randomly selected 40 candidates and validated that approximately 92.5% of non-reference L1Hs were inserted into a KPGP9 genome. In addition, unlike conventional methods, our relatively simple and expedited approach was highly reproducible in confirming the L1 insertions. Taken together, our findings strongly support that the identification of non-reference L1Hs by our novel target enrichment method demonstrates its future application to genomic variation studies on the risk of cancer and genetic disorders.

불소화 에틸렌 프로필렌 나노 입자 분산액을 이용한 3차원 다층 미세유체 채널 제작 (Fabrication of 3D Multilayered Microfluidic Channel Using Fluorinated Ethylene Propylene Nanoparticle Dispersion)

  • 민경익
    • Korean Chemical Engineering Research
    • /
    • 제59권4호
    • /
    • pp.639-643
    • /
    • 2021
  • 본 연구에서는 3차원 다층 미세유체 디바이스를 제작하기 위한 접착제로서 불소화 에틸렌 프로필렌(fluorinated ethylene propylene, FEP) 나노입자를 연구하였다. FEP 분산 용액을 1500 rpm에서 30초 동안 단순 스핀 코팅하여 기판에 3 ㎛ 두께의 균일하게 분포된 FEP 나노 입자 층을 형성하였다. FEP 나노입자는 300 ℃에서 1시간 동안 열처리 후 소수성 박막으로 변형되었으며, FEP 나노입자를 이용하여 제작된 폴리이미드 필름 기반 미세유체 디바이스는 최대 2250 psi의 압력을 견디는 것을 확인하였다. 마지막으로 기존의 포토리소그래피로 제작하기 어려운 16개의 마이크로 반응기로 구성된 3차원 다층 미세유체 디바이스를 FEP가 코팅된 9개의 폴리이미드 필름을 간단한 1단계 정렬로 성공적으로 구현하였다. 개발된 3차원 다층 미세유체 디바이스는 화학 및 생물학의 다양한 응용을 위한 고속대량 스크리닝, 대량 생산, 병렬화 및 대규모 미세유체 통합과 같은 강력한 도구가 될 가능성이 있습니다.

Genotoxicity on $21{\alpha}-and\;{\beta}-methylmelianodiol$, a Component of Poncirus trifoliata, in Bacterial and Mammalian Cells

  • Ryu, Jae-Chun;Kim, Youn-Jung;Kim, Mi-Soon;Kim, Min-Ji;Sarma, Sailendra Nath;Lee, Seung-Ho
    • Molecular & Cellular Toxicology
    • /
    • 제1권3호
    • /
    • pp.172-178
    • /
    • 2005
  • [ $21{\alpha}$ ]- and ${\beta}$-Methylmelianodiol were isolated as the inhibitor of IL-5 bioactivity from Poncirus tripoliata. To develope as an anti-septic drug, the genotoxicity of $21{\alpha}\;-and\;{\beta}-methylmelianodiol$ was subjected to high throughput toxicity screening (HTTS) because they revealed strong IL-5 inhibitory activity and limitation of quantity. Mouse lymphoma thymidine kinase ($tk^{+/-}$) gene assay (MOLY), single cell gel electrophoresis (Comet) assay in mammalian cells and Ames reverse mutation assay in bacterial system were used as simplified, inexpensive, short-term in vitro screening tests in our laboratory. These compounds are not mutagenic in S. typhimurium TA98 and TA100 strains both in the presence and absence of metabolic activation. Before performing the comet assay, $IC_{20}$ of $21{\alpha}-methylmelianodiol$ was determined the concentration of $25.51\;{\mu}g/mL\;and\;21.99\;{\mu}g/mL$ with and without S-9, respectively. Also $21{\beta}-methylmelianodiol$ was determined the concentration of $24.15\;{\mu}g/mL\;and\;\;22.46\;{\mu}g/mL$ with and without S-9, respectively. In the comet assay, DNA damage was not observed both $21{\alpha}-methylmelianodiol\;and\;21{\beta}-methylmelianodiol$ in mouse lymphoma cell line. Also, the mutant frequencies in the treated cultures were similar to the vehicle controls, and none of $21{\alpha}\;-and\;{\beta}-methylmelianodiol$ with and without S-9 doses induced a mutant frequency over. twice the background. It is suggests that $21{\alpha}\;-and\;{\beta}-methylmelianodiol$ are non-mutagenic in MOLY assay. The results of this battery of assays indicate that $21{\alpha}\;-and\;{\beta}-methylmelianodiol$ have no genotoxic potential in bacterial or mammalian cell systems. Therefore, we suggest that $21{\alpha}\;-and\;{\beta}-methylmelianodiol$, as the optimal candidates with both no genotoxic potential and IL-5 inhibitory effects must be chosen.

Cell-Based Screen Using Amyloid Mimic β23 Expression Identifies Peucedanocoumarin III as a Novel Inhibitor of α-Synuclein and Huntingtin Aggregates

  • Ham, Sangwoo;Kim, Hyojung;Hwang, Seojin;Kang, Hyunook;Yun, Seung Pil;Kim, Sangjune;Kim, Donghoon;Kwon, Hyun Sook;Lee, Yun-Song;Cho, MyoungLae;Shin, Heung-Mook;Choi, Heejung;Chung, Ka Young;Ko, Han Seok;Lee, Gum Hwa;Lee, Yunjong
    • Molecules and Cells
    • /
    • 제42권6호
    • /
    • pp.480-494
    • /
    • 2019
  • Aggregates of disease-causing proteins dysregulate cellular functions, thereby causing neuronal cell loss in diverse neurodegenerative diseases. Although many in vitro or in vivo studies of protein aggregate inhibitors have been performed, a therapeutic strategy to control aggregate toxicity has not been earnestly pursued, partly due to the limitations of available aggregate models. In this study, we established a tetracycline (Tet)-inducible nuclear aggregate (${\beta}23$) expression model to screen potential lead compounds inhibiting ${\beta}23$-induced toxicity. High-throughput screening identified several natural compounds as nuclear ${\beta}23$ inhibitors, including peucedanocoumarin III (PCIII). Interestingly, PCIII accelerates disaggregation and proteasomal clearance of both nuclear and cytosolic ${\beta}23$ aggregates and protects SH-SY5Y cells from toxicity induced by ${\beta}23$ expression. Of translational relevance, PCIII disassembled fibrils and enhanced clearance of cytosolic and nuclear protein aggregates in cellular models of huntingtin and ${\alpha}$-synuclein aggregation. Moreover, cellular toxicity was diminished with PCIII treatment for polyglutamine (PolyQ)-huntingtin expression and ${\alpha}$-synuclein expression in conjunction with 6-hydroxydopamine (6-OHDA) treatment. Importantly, PCIII not only inhibited ${\alpha}$-synuclein aggregation but also disaggregated preformed ${\alpha}$-synuclein fibrils in vitro. Taken together, our results suggest that a Tet-Off ${\beta}23$ cell model could serve as a robust platform for screening effective lead compounds inhibiting nuclear or cytosolic protein aggregates. Brain-permeable PCIII or its derivatives could be beneficial for eliminating established protein aggregates.