• Title/Summary/Keyword: high-temperature high-shear viscosity

Search Result 56, Processing Time 0.037 seconds

Microstructure and Characteristic of Rheocast Al-6.2wt%Si Alloy (Al-6.2wt%Si합금의 리오캐스트 조직과 특성)

  • Lee, Jung-Il;Park, Ji-Ho;Lee, Ho-In;Kim, Moon-Il
    • Journal of Korea Foundry Society
    • /
    • v.14 no.5
    • /
    • pp.438-446
    • /
    • 1994
  • The effect of various thermomechanical treatments on the structure and rheological behaviour of Al-6.2wt%Si alloy in its solidification range were investigated using a Searle type high temperature viscometer. During continuous cooling, the viscosity increases gradually with increasing fraction of solidified alloy, until a critical fraction of solidified alloy is reached above which the viscosity sharply increases. The viscosity of the slurry, at a given volume fraction wolid, decreased with increasing shear rate. The size and morphology of primary solid particles during stirring is influenced strongly by shear rates, cooling rates, volume fraction and stirring time of solid. Morphological changes during stirring as a function of solid volume fractions, shear rate and processing time were also reported. In this study, the size of primary solid particles in these alloys consistently increases and the it`s aspect ratio decrease with the increase in fraction solid and decrease in shear rate. Crystal morphology changes from rosette type to spheroid type with the increase in shear rate and solid fraction.

  • PDF

Cure Behaviors and Physical Properties of Recycled/Virgin Nitrile Rubber (NBR) Blends by High Temperature Shear-Crushing Technique (고온전단분쇄기술을 이용한 재생/신재 니트릴고무(NBR) 블렌드물의 가황거동 및 물리적 특성)

  • Park, Hyun-Ho;Kim, Joon-Hyung;Lee, Chang-Seop;Na, Seong-Taek
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.842-847
    • /
    • 2005
  • Virgin NBR and recycled NBR particles, which were pulverized from NBR scraps by high temperature shear-crushing technique, were blended with different mixing ratio. The effects of the recycled NBR content on the cure characteristics and physical properties of these blends were investigated and resistance properties of these blends to heat and various fluids were also studied. The study of cure characteristics showed that the viscosity increased but the scorch time decreased. The physical properties of rubber blends were improved with the addition of the recycled NBR for heat resistance and various fluid tests.

Parametric Study on the Design of Turbocharger Journal Bearing - Aeration Effects

  • Chun, Sang-Myung
    • KSTLE International Journal
    • /
    • v.7 no.2
    • /
    • pp.35-44
    • /
    • 2006
  • Turbocharger bearings are under the circumstance of high temperature, moreover rotated at high speed. It is necessary to be designed overcoming the high temperature. So the type of oil inlet port, the inlet oil temperature and the sort of engine oil should be designed, controlled and selected carefully in order to reduce the bearing inside temperature. In this study, the influence of aerated oil on a high-speed journal bearing is also examined by using the classical thermohydrodynamic lubrication theory coupled with analytical models for viscosity and density of air-oil mixture in fluid-film bearing. Convection to the walls and mixing with supply oil and re-circulating oil are considered. The considered parameters for the study of bubbly lubrication are oil inlet port's type, oil aeration level and shaft speed. It is found that the type of oil inlet ports and shaft speed play important roles in determining the temperature and pressure, then the friction and load of journal bearing at high speed operation. Also, the results show that, under extremely high shaft speed, the high shear effects on aerated oil and the high temperature effects are canceled out each other. So, the bearing load and friction show almost no difference between the aerated oil and pure oil.

Aeration Effects on the Performance of Turbocharger Journal Bearing under Constant Load Operating Condition (일정하중 운전조건 하에서 공기혼입이 터보챠져 저어널베이링의 성능에 미치는 영향)

  • Chun, Sang-Myung
    • Tribology and Lubricants
    • /
    • v.23 no.5
    • /
    • pp.207-218
    • /
    • 2007
  • Turbocharger bearings are under the circumstance of high temperature, moreover rotated at high speed. It is necessary to be designed overcoming the high temperature. So the type of oil inlet port, the inlet oil temperature and the sort of engine oil should be designed, controlled and selected carefully in order to reduce the bearing inside temperature. In this study, the influence of aerated oil on a high-speed journal bearing is also examined by using the classical thermohydrodynamic lubrication theory coupled with analytical models for viscosity and density of air-oil mixture in fluid-film bearing. Convection to the walls and mixing with supply oil and re-circulating oil are considered. The considered parameters for the study of bubbly lubrication are oil inlet port's type, oil aeration level and shaft speed. It is found that the type of oil inlet ports and shaft speed play important roles in determining the temperature and pressure distribution, then the friction in a journal bearing at high speed operation. Also, the results show that, under extremely high shaft speed, the high shear effects on aerated oil and the high temperature effects are canceled out each other. So, the bearing load and friction show almost no difference between the aerated oil and pure oil.

Effect of Guar Gum on Rheological Properties of Acorn Flour Dispersions

  • Yoo, Byoung-Seung;Shon, Kwang-Joon;Chang, Young-Sang
    • Food Science and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.233-237
    • /
    • 2005
  • Rheological properties of acorn flour-guar gum mixtures (4% w/w) at different guar gum concentrations (0, 0.2, 0.4, 0.6, and 0.8% w/w) were evaluated in steady and dynamic shear. The acorn flour-guar gum mixtures at $25^{\circ}C$ showed high shear-thinning flow behavior (n= 0.20-0.27). Consistency index (K), apparent viscosity (${\eta}_{a,100}$), and Casson yield stress (${\sigma}_{oc}$) increased with the increase in guar gum concentration. Within the temperature range of $25-70^{\circ}C$, the {\eta}_{a,100}$ of mixtures obeyed the Arrhenius relationship with high determination coefficient ($R^2=\;0.974-0.994$). Activation energy values (5.37-6.77 kJ/mole) of acorn flour dispersions in the mixtures with guar gum (0.2-0.8%) were much lower than that (12.5 kJ/mole) of acorn flour dispersion (0% guar gum). Storage modulus (G'), loss modulus (G"), and complex viscosity (${\eta}^*$) increased with the increase in guar gum concentration. Dynamic rheological data of 1n (G', G") versus ln frequency (w) of guar gum-acorn flour mixtures had positive slopes with G' greater than G" over most of the frequency range, indicating that they exhibited weak gel-like behavior.

STUDIES ON THE POLY(4,4-TEREPHTHANILIDEALKYLAMIDE)S (II) Rheological properties and Fibre Performance

  • Seung Sang Hwang;Byo
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1987.06b
    • /
    • pp.11-11
    • /
    • 1987
  • Among other poly(4,4'-terephthanilidealkylamide)s (PTAA's), poly (4,4'-terephthanilideadipamide) (PTAd) gave clear critical concentration curves. For PTAA's with methylene units more than 6, the critical concentration (C*) seemed to be beyond the solubility limit of H₂SO₄. Under shearing conditions, the nematic domains were easily oriented and stretched in the direction of shear , and a fibrillar structure resulted. At low frequencies, a monotollous reduction of loss tangent (tan) was observed as concentration increased. At high frequencies, however, tan was increased above C* again, and showed maximum at saturation concentration (Cs). With increasing temperature, viscosity of isotropic and anisotropic phases was normally decreased, while viscosity of biphases was increased. Plot of complex viscosity (If) against temperature based on rheological measurements exhibited a good correlation with phase diagram constructed by polarizing microscope observations. Rheological parameters suggested the optimum dope concentration of PTAd with inherent viscosity 2.02 at 30oc is in the vicinity of 19.2 wt%, which seemed to agree well with spinning experiments (around 19.4 wt%). In general, effects of spinning and annealing conditions on the mechanical properties of PTAA fibres were most pronounced in PTAd fibre spun from anisotropic spinning dope .

  • PDF

Effect of Gum Addition on the Rheological Properties of Rice Flour Dispersions

  • Chun, So-Young;Kim, Hyung-Il;Yoo, Byoung-Seung
    • Food Science and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.589-594
    • /
    • 2006
  • The effect of five commercial gums (carboxylmethylcellulose, CMC; guar gum, GG; hydroxypropylmethyl-cellulose, HPMC; locust bean gum, LBG; and xanthan gum) at a concentration of 0.25% on the rheological properties of rice flour (RF) dispersions was investigated in steady and dynamic shear. The steady shear rheological properties showed that RF gum mixture dispersions (5%, w/w) at $25^{\circ}C$ had high shear-thinning flow behavior (n=0.20-0.31) exhibiting a yield stress. Magnitudes of consistency index (K), apparent viscosity (${\eta}_{a,100}$), and Casson yield stress (${\sigma}_{oc}$) of RF-gum mixtures were much higher than those of RF dispersion with no added gum (control). Activation energy values (6.67-10.8 kJ/mole) of RF-gum mixtures within the temperature range of $25-70^{\circ}C$ were lower than that (11.9 kJ/mole) of the control. Dynamic rheological data of log (G', G") versus log frequency (${\omega}$) of RF-gum mixtures had positive slopes (0.15-0.37) with G' greater than G" over most of the frequency range (0.63-63 rad/sec), demonstrating a frequency dependency. Tan ${\delta}$ (G"/G') values of RF-gum mixtures, except for xanthan gum, were much higher than that of the control.

Thermohydrodynamic Lubrication Analysis of Surface-Textured Parallel Slider Bearing: Effect of Dimple Depth (Surface Texturing한 평행 슬라이더 베어링의 열유체윤활 해석: 딤플 깊이의 영향)

  • Park, TaeJo;Kim, MinGyu
    • Tribology and Lubricants
    • /
    • v.33 no.6
    • /
    • pp.288-295
    • /
    • 2017
  • In order to improve the efficiency and reliability of the machine, the friction should be minimized. The most widely used method to minimize friction is to maintain the fluid lubrication state. However, we can reduce friction only up to a certain limit because of viscosity. As a result of several recent studies, surface texturing has significantly reduced the friction in highly sliding machine elements, such as mechanical seals and thrust bearings. Thus far, theoretical studies have mainly focused on isothermal/iso-viscous conditions and have not taken into account the heat generation, caused by high viscous shear, and the temperature conditions on the bearing surface. In this study, we investigate the effect of dimple depth and film-temperature boundary conditions on the thermohydrodynamic (THD) lubrication of textured parallel slider bearings. We analyzed the continuity equation, the Navier-Stokes equation, the energy equation, and the temperature-viscosity and temperature-density relations using a computational fluid dynamics (CFD) code, FLUENT. We compare the temperature and pressure distributions at various dimple depths. The increase in oil temperature caused by viscous shear was higher in the dimple than in the bearing outlet because of the action of the strong vortex generated in the dimple. The lubrication characteristics significantly change with variations in the dimple depths and film-temperature boundary conditions. We can use the current results as basic data for optimum surface texturing; however, further studies are required for various temperature boundary conditions.

Preparation and Physicochemical Characterization of Sea Tangle Vinegar for Utilization as Vinegar-Based Salad Dressing (식초기반 샐러드 드레싱용 다시마 식초 제조 및 이화학적 특성)

  • Han, Areum;Surh, Jeonghee
    • Korean journal of food and cookery science
    • /
    • v.33 no.3
    • /
    • pp.300-306
    • /
    • 2017
  • Purpose: This study aimed to prepare sea tangle vinegar and test its applicability as a vinegar-based functional salad dressing in terms of physicochemical properties. Methods: Sea tangle vinegar was prepared by mixing sea tangle with sugar and vinegar and fermenting the mixture at room temperature for 3 months. The resulting sea tangle vinegar was examined for its physicochemical properties and antioxidant activity with brewed vinegar and persimmon vinegar as controls. Results: The sea tangle vinegar showed significantly higher viscosity than control vinegars, and shear thinning behavior that is typical for salad dressing containing polymers. In addition, storage modulus (G′) of sea tangle vinegar was relatively high in dynamic viscosity measurement while that of control vinegars remained negligible. Together with the high soluble solids content of sea tangle vinegar, rheological behavior indicates that sea tangle vinegar had soluble polysaccharides extracted from sea tangle, consequently leading to an increase in viscosity. Titratable acidity (TA) and pH were 2.52% and 3.58, respectively, which satisfies the TA and pH requirements for microbiological safety of a salad dressing. Absorbance at 285 nm and Folin Ciocalteu's reagent method revealed that sea tangle vinegar contained antioxidative phenolic compounds. Conclusion: This study demonstrates that sea tangle vinegar could be potentially developed as a vinegar-based functional salad dressing when combined with sensory evaluation in the future.

Physical Properties of Acetylated Sweet Potato Starches as Affected by Degree of Substitution (치환도가 초산 고구마전분의 물리적 특성에 미치는 영향)

  • Yoo, Byoung-Seung;Lee, Hye-Lin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.7
    • /
    • pp.1048-1052
    • /
    • 2011
  • This study examined the flow properties, paste clarity, freeze-thaw stability and gel strength of acetylated sweet potato starch (ASPS) pastes and gels as a function of degree of substitution (DS). ASPS showed high shear-thinning flow behaviors with high Casson yield stress ($\sigma_{oc}$). Consistency index (K), apparent viscosity ($\eta_{a,100}$) and $\sigma_{oc}$ values of ASPS increased with an increase in DS. In the temperature range of $25{\sim}70^{\circ}C$, ASPS followed an Arrhenius temperature relationship. The activation energies (Ea=13.2~14.3 kJ/mol) of the ASPS samples were much lower than that (18.1 kJ/mol) of the native sweet potato starch (SPS). ASPS gels showed better freeze-thaw stability with a significant decrease in syneresis (%) compared to SPS gel. The gel strength values of ASPS were much lower than that of SPS, and significantly decreased with an increase in DS. The clarity of native SPS paste increased after acetylation.