• 제목/요약/키워드: high-strength structural steel

검색결과 835건 처리시간 0.023초

고장력 주인장 철근을 사용한 전단보강이 없는 보의 전단성능에 관한 연구 (Shear Behavior of High-Strength Steel Reinforced Concrete Beams without Stirrups)

  • 손영무;윤영수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권2호
    • /
    • pp.203-210
    • /
    • 2002
  • In these days, High-strength steel prevails throughout the construction fields for the benefit of structural and economical aspects. But high-strength steel is used by the simple calculation of flexural capacities for the purpose of reducing flexural reinforcement. So, this paper is mainly focused on the shear behavior of high-strength steel reinforced concrete beams without stirrups comparing with normal-strength steel reinforced concrete beams. Specimens were made and tested with the experimental parameters, such as steel yield strength, reinforcement ratios and minimum shear reinforcement. The main result was that not only area but also the yield strength of flexural reinforcement should be considered to predict the shear capacities of concrete beams. In addition, the experimental results were simulated by modified compression field theory analysis program, RESPONSE 2000. A good agreement was achieved between the test results and program analyses.

Direct strength method for high strength steel welded section columns

  • Choi, Jong Yoon;Kwon, Young Bong
    • Steel and Composite Structures
    • /
    • 제29권4호
    • /
    • pp.509-526
    • /
    • 2018
  • The direct strength method adopted by the AISI Standard and AS/NZS 4600 is an advanced design method meant to substitute the effective width method for the design of cold-formed steel structural members accounting for local instability of thin plate elements. It was proven that the design strength formula for the direct strength method could predict the ultimate strength of medium strength steel welded section compressive and flexural members with local buckling reasonably. This paper focuses on the modification of the direct strength formula for the application to high strength and high performance steel welded section columns which have the nominal yield stress higher than 460 MPa and undergo local buckling, overall buckling or their interaction. The resistance of high strength steel welded H and Box section columns calculated by the proposed direct strength formulae were validated by comparison with various compression test results, FE results, and predictions by existing specifications.

건설용 강재개발 및 용접기술동향 (Development of Structural Steel and Trend of Welding Technology)

  • 김성진;정홍철
    • Journal of Welding and Joining
    • /
    • 제34권1호
    • /
    • pp.7-20
    • /
    • 2016
  • A brief overview is given of the development of various structural steels and their welding application technology. Firstly, the general characteristics and welding performance of structural steels used in architecture and bridge are introduced. For safety against earthquakes or strong wind, and for highly efficient welding in high-rise building constructions, ultra high strength steel with tensile strength over 800 MPa or high HAZ toughness steel plates under high heat input welding have been developed. In particular, efficient welding technology ensuring high resistance to cold and hot cracking of ultra high strength steel is reviewed in the present paper. Secondly, various coated steels used mainly for outer part in construction are briefly discussed. Moreover, a major drawback of coated steel during welding operation, and several solutions to overcome such technical problem are proposed. It is hoped that this review paper can lead to significant academic contributions and provide readers interested in the structural steels with useful welding technology.

A fracture criterion for high-strength steel structural members containing notch-shape defects

  • Toribio, J.;Ayaso, F.J.
    • Steel and Composite Structures
    • /
    • 제3권4호
    • /
    • pp.231-242
    • /
    • 2003
  • This paper deals with the formulation and development of fracture criteria for high-strength structural members containing surface damage in the form of notches (i.e., blunt defects). The important role of the yield strength of the material and its strain hardening capacity (evaluated by means of the constitutive law or stress-strain curve) is analysed in depth by considering the fracture performance of notched samples taken from high-strength steels with different levels of cold drawing (the most heavily drawn steel being commercial prestressing steel used in prestressed concrete). The final aim of the paper is to establish fracture-based design criteria for structural members made of steels with distinct yield strength and containing very different kinds of notch-shape surface damage.

고강도 강재를 사용한 건물골조방식 구조물의 구조비용 최적화 (Structural Cost Optimization for Building Frame System Using High-Strength Steel Members)

  • 최상현;권봉근;김상범;서지현;권윤한;박효선
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.541-548
    • /
    • 2006
  • This study presents a structural cost optimization method for building frame system using high-strength steel members. In, this optimization method, the material cost of steel member is involved in objective function to find the optimal cost of building frame systems. Genetic Algorithm is adopted to optimizer to find structural cost optimization. The proposed adapted to structural design of 3.5 stories example buildings with buildings frame systems. As a result, The proposed optimization method can be effectively adapted to cost optimization of building frame systems using high-strength steel members.

  • PDF

부재 종류에 따른 고강도 강재의 경제성 평가 (Economic Evaluation of High-Strength Steel for Structural Member Types in Building Structures)

  • 김인호;조소훈;김종호;이철우
    • 한국전산구조공학회논문집
    • /
    • 제26권2호
    • /
    • pp.113-121
    • /
    • 2013
  • 현재 국내에서 생산되는 구조용 강재의 강도는 크게 5가지로 구분할 수 있다. 경제적인 구조설계를 하기 위하여 적절한 강도의 선정이 우선적으로 요구되는데 현재는 이와 관련된 기존 자료가 충분치 않은 상태이다. 최근, 국내에서 항복강도가 650MPa인 고강도 강재가 개발되어 구조용 강재의 강도 범위가 더 커졌기 때문에 부재 종류별 강재의 선택에 따른 경제성의 차이도 더 커졌을 것으로 예상된다. 본 논문에서는 경제적인 구조설계에 도움이 되도록, 항복강도 235MPa, 325MPa 및 650MPa 강재를 다양한 구조부재에 적용함으로서, 고강도 강재 적용에 따른 부재 종류별 경제성을 분석하였다.

Structural Performance of Steel Pipe Splice for SD500 High-strength Reinforcing Bar under Cyclic Loading

  • Kim, Hyong-Kee
    • Architectural research
    • /
    • 제10권1호
    • /
    • pp.13-23
    • /
    • 2008
  • It is the purpose of this study to evaluate the structural performance of steel pipe splice for SD500 high-strength reinforcing bar, through a cyclic loading test. The experimental variables adopted in this study include the development length of rebar, the type of sleeve, and size of reinforcing bar, among others. The results of this study showed that the developed steel pipe splice system for SD500 high-strength reinforcing bar, retained the structural performance required in domestic, ACI and AIJ code. It is considered that the study result presented in this paper can be helpful in developing a reasonable design method for a steel pipe splice system for SD500 high-strength reinforcing bar.

자동차용 고강도 냉연강판의 개발 및 적용현황 (Developments and applications of high strength cold rolled steel sheets for automobiles)

  • 김성주;진광근
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 제5회 압연심포지엄 신 시장 개척을 위한 압연기술
    • /
    • pp.45-52
    • /
    • 2004
  • Continuing pressure for the weight reduction of vehicles and improvement of collision safety is driving the development of new high strength steel with excellent formability. The formable high strength steels which have excellent drawability have been developed and applied to the complicated inner panels. Although BH steel have mainly occupied the material market for outer panels, it is challenged by DP steel which have low yield strength and good bake hardenability. The advanced high strength steel, TRIP steels and DP steels which have excellent formability are new alternatives to conventional HSLA steel for structural parts such as members and pillars. HSLA steels also have been used for automotive bumper reinforcements due to their high yield ratio. Higher grade complex phase steel(CP) were developed for bumper reinforcements by addition of precipitation hardening to transformation strengthened steel. The usage of the advanced high strength steel ale increasing and will become the main material in structural parts near future. This paper describes the features of newly developed high strength cold rolled steels for automobiles.

  • PDF

Structural coupling mechanism of high strength steel and mild steel under multiaxial cyclic loading

  • Javidan, Fatemeh;Heidarpour, Amin;Zhao, Xiao-Ling;Al-Mahaidi, Riadh
    • Steel and Composite Structures
    • /
    • 제27권2호
    • /
    • pp.229-242
    • /
    • 2018
  • High strength steel is widely used in industrial applications to improve the load-bearing capacity and reduce the overall weight and cost. To take advantage of the benefits of this type of steel in construction, an innovative hybrid fabricated member consisting of high strength steel tubes welded to mild steel plates has recently been developed. Component-scale uniaxial and multiaxial cyclic experiments have been conducted with simultaneous constant or varying axial compression loads using a multi-axial substructure testing facility. The structural interaction of high strength steel tubes with mild steel plates is investigated in terms of member capacity, strength and stiffness deterioration and the development of plastic hinges. The deterioration parameters of hybrid specimens are calibrated and compared against those of conventional steel specimens. Effect of varying axial force and loading direction on the hysteretic deterioration model, failure modes and axial shortening is also studied. Plate and tube elements in hybrid members interact such that the high strength steel is kept within its ultimate strain range to prevent sudden fracture due to its low ultimate to yield strain ratio while the ductile performance of plate governs the global failure mechanism. High strength material also significantly reduces the axial shortening in columns which prevents undesirable frame deformations.

고강도강재의 효율적 사용을 위한 초고층건물의 최적설계기법 (Structural Optimization of High-rise Buildings using High-strength Steels)

  • 서지현;권봉근;김상범;박효선
    • 한국전산구조공학회논문집
    • /
    • 제22권3호
    • /
    • pp.277-287
    • /
    • 2009
  • 최근 국내에서 400~600MPa급의 구조용 고강도강재가 생산되고 있으며, 큰 하중을 부담해야 하는 초고층건물에는 고강도강재의 사용이 효과적일 것으로 예상되나, 고강도강재의 적절한 사용법 및 적용사례 부족으로 인해 고강도강재는 일부 건축물에서 제한적으로 사용되고 있다. 그럼으로 본 연구에서는 고강도강재를 초고층건물에 이용할 수 있는 방법으로 최적화기법을 이용한 초고층건물 구조비용 최적설계기법을 개발하였다. 개발된 최적설계법은 강재의 강종별 재료 가격을 고려하며 강재의 강도와 크기를 결정함으로서 구조비용을 최소화 시킬 수 있다. 제안된 구조비용 최적설계법을 6개의 실제 초고층건물 구조설계에 적용하였으며, 경험에 의존한 구조 설계를 병행하여 개발된 최적설계법의 효율성과 적용성을 평가하였다. 개발된 초고층건물 구조비용 최적화기법은 경험에 의존한 설계에 비해 7~21%정도의 구조비용을 절감할 수 있었다. 또한, 제안된 최적설계법의 적용결과로서 얻어진 강재의 강도분포와 강종별 재료비용의 분석을 통해서 고강도강재를 초고층건물에 효과적으로 적용하기 위한 간략한 가이드라인을 제시하였다.