• Title/Summary/Keyword: high-strength mortar

Search Result 531, Processing Time 0.032 seconds

Mechanical and Electrical Properties of Low-Cement Mortar Using a Large Amount of Industrial By-Products (산업부산물을 다량활용한 저시멘트 모르타르의 역학적·전기적 특성)

  • Kim, Young-Min;Im, Geon-Woo;Lim, Chang-Min;Lee, Gun-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.43-44
    • /
    • 2023
  • This study evaluated the mechanical and electrical properties of low-cement mortar using a large amount of industrial by-products to reduce carbon emissions from the cement industry. As types of industrial by-products, blast furnace slag and fly ash, which are representative materials, were used, and ultra-high fly ash was mixed and evaluated to solve the problem of initial strength loss. In addition, in order to evaluate the electrical properties, 1% of MWCNT was incorporated relative to the powder mass. As experimental items, the compressive strength was measured on the 1st, 3rd, 7th and 28th days of age, and the rate of change in electrical resistance was measured on the 28th day of age. As a result of the experiment, the initial strength of the test specimen mixed with blast furnace slag and fly ash was significantly lower than that of 100% cement, and the specimen mixed with blast furnace slag showed strength equal to that of cement at 28 days of age. As an electrical characteristic, the electrical resistance was reduced when the load was loaded, and this reason is judged to be the effect of improving the conductivity as the connection between CNTs is narrowed by the compressive load.

  • PDF

Strength Behaviour and Hardening Mechanism of Chemical Bonded Fly Ash Mortar (화학적 결합에 의한 Fly ash 경화체의 강도 발현 메카니즘)

  • Jo Byung Wan;Moon Rin Gon;Park Seung Kook;Ko Hee Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.373-376
    • /
    • 2005
  • The discharge of fly ash that is produced by coal-fired electric power plants is rapidly increasing in Korea. The utilization of fly ash in the raw materials would contribute to the elimination of an environmental problem and to the development of new high-performance materials. Fly ash consists of a glass phase. As it is produced from high temperature, it is a chemically stable material. Fly ash mostly consists of $SiO_{2}$ and $Al_{2}O_{3}$, and it assumes the form of an oxide in the inside of fly ash. Because this reaction has not broken out by itself, it is need to supply it with additional $OH^{-}$ through alkali activators. We used alkali activators for supplying it with additional $OH^{-}$. This paper concentrated on the strength development according to the kind of chemical activators, the curing temperature, the heat curing time.

  • PDF

Properties of the Alkali Activated Mortar According to Metakaolin Replacement Ratio (알칼리 활성화 모르타르의 메타카올린 치환율에 따른 특성)

  • Seo, Dong-Hyeon;Hyung, Won-Gil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.4
    • /
    • pp.313-320
    • /
    • 2016
  • The aim of this study is to look into the metakaolin replacement ratio of blast furnace slag based alkali activated slag mortar and its mechanical characteristics according to changes in stimulant concentration. Metakaolin has high fineness, and therefore the fluidity becomes lower as the replacement ratio becomes higher. So in this study, a sufficient value of mixing water was provided to secure fluidity for the characteristic experiment, and a different W/B was derived for each specimen in order to make the fluidity identical. A characteristic experiment was conducted according to the mol concentration of NaOH, which was used as the mixing water that affects fluidity. Additionally, compressive strength measurement, observation of inner microstructure through SEM, acid resistance experiment, and neutralization resistance was conducted. The results of this study revealed that for a high concentration NaOH solution to have even fluidity, a high W/B is necessary, and the functions were enhanced, not degraded.

Comparative Study on Compressive Strength of Concrete with New Sand-Cap and Neoprene Pad

  • Park, Young-Shik;Suh, Jin-Kook
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.1
    • /
    • pp.15-19
    • /
    • 2008
  • The most typical capping method for concrete structures is a sulfur-mortar compound capping, provided it satisfied the standard criterion set forth by ASTM C 617, but this conventional bonded-type method has many problems. It exhibits relatively the smaller unreliable value of the strength of high-strength concrete due to the differences of elasticity and strength between the cylinder and the cap, and manifests poor serviceability such as dangerous working tasks or a waste of the working time. To prevent these problems, unbonded-type capping methods have taken the place of the conventional methods in recent years. One of the popular methods is the use of synthetic rubber like a neoprene pad. Serious problems still remain in this method, which include the consideration of its chemical characteristics in consideration of the selection, the safekeeping and the economy of the pads. Moreover, the synthetic rubber pads cannot be used in concrete cylinder with strength greater than 80 MPa according to ASTM C 1231-00. New 'sand-capping method' presented in this study, can be applicable to the compressive strength evaluation of the high strength concrete in the range of $70{\sim}100\;MPa$. This new method has better simplicity and reliability than those of existing 'sand-box', because usual materials such as standard sand and simply-devised apparatus are used for the capping system. The statistical analysis of the test results revealed that the new sand-capping method exhibited the smallest deviation and dispersion, attesting for its much better reliability than other methods specified in ASTM C 1231/1231M.

Effect of steel fiber volume fraction and aspect ratio type on the mechanical properties of SIFCON-based HPFRCC

  • Kim, Seugnwon;Jung, Haekook;Kim, Yongjae;Park, Cheolwoo
    • Structural Engineering and Mechanics
    • /
    • v.65 no.2
    • /
    • pp.163-171
    • /
    • 2018
  • Plain concrete is a brittle material with a very low tensile strength compared to compressive strength and critical tensile strain. This study analyzed the dynamic characteristics of high-performance fiber-reinforced cementitious composites based on slurry-infiltrated fiber concrete (SIFCON-based HPFRCC), which maximizes the steel-fiber volume fraction and uses high-strength mortar to increase resistance to loads, such as explosion and impact, with a very short acting time. For major experimental variables, three levels of fiber aspect ratio and five levels of fiber volume fraction between 6.0% and 8.0% were considered, and the flexural strength and toughness characteristics were analyzed according to these variables. Furthermore, three levels of the aspect ratio of used steel fibers were considered. The highest flexural strength of 65.0 MPa was shown at the fiber aspect ratio of 80 and the fiber volume fraction of 7.0%, and the flexural strength and toughness increased proportionally to the fiber volume fraction. The test results according to fiber aspect ratio and fiber volume fraction revealed that after the initial crack, the load of the SIFCON-based HPFRCC continuously increased because of the high fiber volume fraction. In addition, sufficient residual strength was achieved after the maximum strength; this achievement will bring about positive effects on the brittle fracture of structures when an unexpected load, such as explosion or impact, is applied.

Development of geopolymer with pyroclastic flow deposit called Shirasu

  • Katpady, Dhruva Narayana;Takewaka, Koji;Yamaguchi, Toshinobu
    • Advances in materials Research
    • /
    • v.4 no.3
    • /
    • pp.179-192
    • /
    • 2015
  • The study presents a preliminary investigation on the applicability of Shirasu (a pyroclastic flow deposit characterized by high percentage of volcanic glass) in geopolymer. Comparative study on compressive strength and internal pore structure has been done between geopolymers with alkali activated Shirasu and fly ash as aluminosilicates. Mortar mix proportions are selected based on variations in ratio of alkaline activators to aluminosilicate and also on silica to alkali hydroxide ratio. From the experimental study, Shirasu geopolymer exhibited fairly good compressive strength. Mix proportion based on silica to alkali hydroxide ratio is observed to have profound effect on strength development.

Mechanical Properties of Blast Furnace Slag Fineness Mortar according to Alkali Activator (알칼리 자극제 종류에 의한 고로슬래그 미분말 모르타르의 강도 특성)

  • Kim, Jong-Hee;Kim, Gyu-Yong;Shin, Kyoung-Su;Nam, Jeong-Soo;Koo, Kyung-Mo;Yun, Yong-Sang
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.217-218
    • /
    • 2011
  • The advantages of blast-furnace slag concrete may include lower hydration heating velocity, restraint on concrete temperature increase, long-age strength improvement due to latent hydraulic reaction, improved water tightness, and repulsion to chemical erosion. These advantages contribute to the high quality of the blast-furnace slag concrete. However, the blast-furnace slag concrete has its limitations as well. These disadvantages may include retarded setting and elongated retention of mold due to the weak strength of early-age. Nevertheless, much research is currently under way to improve the aforementioned issues. To improve activity of blast furnace slag powder, alkaline irritants has been used. In this study, we analyze effect on activity fineness and rate of substitution of Alkali Activator toward activity.

  • PDF

Strength Properties and Pore Structure of Epoxy-Modified Mortars under Steam and Steam/Heat Combined Curing (증기 및 가열 조합양생에 의한 에폭시수지 혼입 모르타르의 강도 및 세공구조)

  • Lee, Jae-Hwa;Kim, Wan-Ki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.107-108
    • /
    • 2011
  • The purpose of present study is to examine the application of effective curing to hardener-free epoxy-modified mortars. The epoxy-modified mortars are prepared with polymer-cement ratios, subjected to two types of curing conditions, and tested for compressive, flexural and tensile strengths. As a result, hardener-free epoxy-modified mortars with steam curing is markedly improved with increasing air-dry curing period. High strength development of the epoxy-modified mortars may be achieved by the dense microstructure by cement and the hardener of the epoxy resin in the mortars.

  • PDF

Flexural Properties of Reinforced Steel and GFRP Reinforced Polymer Concrete T-Beams (철근 및 GFRP 보강 폴리머 콘크리트 T형 보의 휨 특성)

  • Yeon Kyu Seok;Kweon Taek Jeong;Jeong jung Ho;Jin Xing Qi
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.695-698
    • /
    • 2004
  • Recently, the usage of polymer concrete mortar gathering an interest as a new construction material rapidly increases inside and outside of the country because it is an environment-friendly and endurable material. However, up to these days, the researches about the polymer composite have not been satisfactorily conducted. The polymer concrete is superior to the general cement materials in the properties of strength and durability while it is inferior in elastic modulus. Because that the members using the polymer concrete have therefore higher strength and ductility than the members of general cement concrete, an analysis equation of high-strength cement concrete can be referenced but it is not applied for the researches about the polymer concrete members. In this study, the flexural properties of T-shaped beam of the steel- and GFRP-reinforced polymer concrete are analyzed to examine the suggested analysis equation. Results of this experimental researches are to be used as the basic data in a structural design of the polymer concrete.

  • PDF

Initial strength charactistic of Prepacked Grouting Mold with IGCC Ultra-Fine Fly Ash (초고분말 IGCC 플라이애시가 혼입된 프리팩트 그라우팅 몰드의 초기 강도 특성)

  • Lim, Chang-Min;Kwon, Hyun-Woo;Kim, Young-Min;Lee, Gun Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.23-24
    • /
    • 2022
  • In this study, the Prepacked infilling mortar to which IGCC Ultra-Fine Fly Ash was added was evaluated when grouting aggregates. Efflux, Consistency, and Compressive Strength were measured, and it was found to have high fluidity when mixing IGCC Ultra-Fine Fly Ash, but the initial compressive strength was low

  • PDF