• Title/Summary/Keyword: high-strength mortar

Search Result 530, Processing Time 0.028 seconds

Tensile performance of HPFRCC depending on various water-to-binder ratios (W/B 변화에 따른 HPFRCC의 인장성능 특성)

  • Lee, Jong-Tae;Park, Yong-Jun;Kang, Byung-Hoi;Jung, Sang-Woon;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.152-153
    • /
    • 2014
  • Recently, there are many research for increasing tensile strength of concrete using fiber-reinforced mortar. Especially, the research about the high ductile concrete with fiber-reinforcement which behaves strain-hardening (defined as HPFRCC) is performed while it has the drawback of decreasing workability because of interruption of fibers such as fiber-ball effect. Hence to solve this problem, as a previous research, combination of metal fiber and organic fiber was suggested. Although this research achieved favorable result of workability of HPFRCC, the research scope was concentrated on workability of the mortar. Therefore, in this research, based on the fiber-combination of previous research, the tensile properties is evaluated depending on water-to-binder ratios to obtain improved tensile performance.

  • PDF

Investigation on the Characteristics of Interfacial Transition Zone (ITZ) of High-Strength Cement Mortar Incorporating Graphene Oxide (그래핀 옥사이드 혼입 고강도 시멘트 모르타르의 Interfacial Transition Zone (ITZ) 특성에 관한 연구)

  • Im, Su-Min;Cho, Seong-Min;Liu, Jun-Xing;Lim, Seungmin;Bae, Sung-Chul
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.343-350
    • /
    • 2022
  • In recent years, nanomaterials, such as nano-silica, carbon nanotubes, and graphene oxide (GO), have been suggested to improve the properties of the interfacial transition zone (ITZ) between aggregates and cement pastes, which has most adversely affected the strength of quasi-brittle concrete. Among the nanomaterials, GO with superior dispersibility has been reported to be effective in improving the properties of ITZ of normal-strength concrete by forming interfacial chemical bonds with Ca2+ ions abundant in ITZ. In this study, the effect of GO on the properties of ITZ in the high-strength mortar was elucidated by calculating the change in hydration heat release, ITZ thickness, and the porosity around ISO sand, which was obtained with isothermal calorimetry tests and scanning electron microscope image analysis, respectively.

Effect of Microstructure on the Properties of High Strength Grouts (고강도 그라우트재의 특성에 미치는 미세구조의 영향)

  • 정민철;남기웅;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.6
    • /
    • pp.609-616
    • /
    • 1994
  • Investigation for the high strength grouts using ordinary cement mortar, melamine formaldehyde condensate (MFC) with various admixtures was carried out. The physical properties of the grouts were investigated through the observation of the microstructure and the application of fracture mechanics. When the lime stone and fly ash was added with 6 wt% to the grouts, the compressive strength was about 72 MPa, 69 MPa respectively, and the flexural strength was about 11.9 MPa, 11.4 MPa respectively, the Young's modulus was about 4.3 GPa, 3.9 GPa, and the critical stress intensity was about 7.3 ×10-1MNm-1.5, 6.8×10-1MNm-1.5 respectively. When the silica fume was added with 6 wt% to the grouts, the compressive strength and the flexural strength were 81 MPa, 12.3 MPa, Young's modulus was 4.8 GPa and the critical stress intensity was about 8.4×10-1MNm-1.5.

  • PDF

A Fundamental Study on the Strength Development in Cement Mortar under Initial Curing Temperature (초기양생온도에 따른 시멘트 모르터의 강도발현에 관한 기초적 연구)

  • 백민수;이영도;임남기;김성식;이종균;최문식;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.157-165
    • /
    • 1997
  • In this experiment, there is a purpose to analysis the relationship of feature of compressive strength after fixing of remarkable element under the condition of initial curing temperature. According to this experiment, we get to the fallow result. In case of highest curing temperature, 3-day-strength become high but last revelation of strength become low among the condition of initial curing temperature, the highest curing temperature have an effect on revelation of strength by the application of cumulative temperature, we can get the shape of revelation of strength.

  • PDF

The fractal analysis of the fracture surface of concretes made from different coarse aggregates

  • Prokopski, Grzegorz;Konkol, Janusz
    • Computers and Concrete
    • /
    • v.2 no.3
    • /
    • pp.239-248
    • /
    • 2005
  • The article presents the results of examination of the fractal dimension D of concrete specimen fracture surfaces obtained in fracture toughness tests. The concretes were made from three different types of coarse aggregate: gravel, dolomite and basalt aggregate. Ordinary concretes (C40) and high-performance concretes (HPC) were subjected to testing after 7, 14, 28 and 90 days of curing, respectively. In fracture toughness and compressive tests, different behaviours of concretes were found, depending on the type of aggregate and class of concrete (C40, HPC). A significant increase in the strength parameters tested occurred also after a period of 28 days (up to the $90^{th}$ day of curing) and was particularly large for concretes C40. Fractal examinations performed on fracture replicas showed that the fractal dimension D was diverse, depending on the coarse aggregate type and concrete class being, however, statistically constant after 7 and 14 days for respective concretes during curing. The fractal dimension D was the greater, the worse strength properties were possessed by the concrete. A cross-grain crack propagation occurred in that case, due to weak cohesion forces at the coarse aggregate/mortar interface. A similar effect was observed for C40 and HPC made from the same aggregate. A greater dimension D was exhibited by concretes C40, in which case the fracture was easier to form compared with high-performance concretes, where, as a result of high aggregate/mortar cohesion forces, the crack propagation was of inter-granular type, and the resulted fracture was flatter.

A Study on the Application of MJM for Ground (MJM 주입공법의 현장적용성에 관한 연구)

  • Chun, Byung-Sik;Choi, Choon-Sik;Roh, Jong-Ryun;Lee, Seung-Joon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.437-442
    • /
    • 2005
  • The high pressure jet grouting method is mainly used in the grouting. But, this method has problems that the scale and strength of improved body is not constant with ground condition. Considering these problems, triple rod MJM that results in the high-strength effect by the technology of the injected ${\phi}7mm$ cement mortar was developed. In this MJM, the unconfined strength is estimated with the various combination ratio and engineering characteristic, strength improvement effect of improved body, was checked through the field test. It is known that the application of MJM was verified with ground and construction condition.

  • PDF

Improvement and Evaluation of Seismic Performance of Reinforced High-Strength Concrete Beam-Column Joints with Advanced Reinforcing Detailings and High Ductile Fiber-Reinforced Mortar (고성능 배근상세 및 HDFRM을 활용한 고강도 철근콘크리트 보-기둥 접합부 내진성능 평가 및 개선)

  • Ha, Gee-Joo;Sin, Jong-Hak;Yi, Dong-Ryul;Hong, Kun-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.5-8
    • /
    • 2008
  • In this dissertation, experimental research was carried out to study the hysteretic behavior of reinforced high-strength concrete beam-column joints designed by high performance techniques, such as application of high-strength concrete, reducing of joint regions damage, moving of beam plastic hinge, advanced reinforcing detailings and High Ductile Fiber-Reinforced Mortar.(HDFRM) Specimens(HJCI), designed by the development of earthquake-resistant performance, moving of beam plastic hinge, and new design approach, were attained the moving of beam plastic hinge and developed significantly earthquake-resistant performance of such joints. Specimens(HJRP), designed with HDFRM, were indicated more stable hysteresis behavior, high load carrying capacity, and distributed crack pattern of specimens HJRP when compared to the control specimen.

  • PDF

Effects of High Temperature Maintenance Time and Curing Method on Compressive Strength of FA Large Volume Replacement Mortar after Application of Resuscitation Material (소생재 도포 후 고온 유지시간 및 양생방법 변화가 Fly Ash 다량치환 모르타르의 압축강도에 미치는 영향)

  • Choi, Yoon-Ho;Lee, Hyuk-Ju;Lee, Young-Jun;Hyun, Seung-Yong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.141-142
    • /
    • 2019
  • In this study, we conducted a comparative analysis of the effects of retention time and resuscitation method on the degree of resuscitation after reapplying mortar with much FA replacement. Results After applying NaOH to the top surface of 60 % FA-substituted mortar, the degree of resuscitation at $40^{\circ}C$ was high enough to increase the overall curing time, but there was no significant difference. However, with regard to the curing method, middle curing showed the greatest manifestation, followed by wrapping and underwater curing, but there was no significant difference. The resuscitation level on the 28th of the lumber was found to be revived to about 70~80 % at around 30 % without resuscitation.

  • PDF

Development of the Repair Mortar using Coarse Powder of Coal Ash (석탄회 조분을 유효이용한 보수 모르터의 개발)

  • 전진환;조정기;시기영장;립정호;화미광희
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.1017-1022
    • /
    • 2003
  • The hydraulic structures such as aqueduct tunnels and the drainage canal of the hydroelectric power plant in Japan are almost old. Therefore, the concrete surface of the aqueduct tunnel has received damage by wear-out and the crack, etc. This study was to develop repair mortar mixed a coal ash coarse powder by using two kinds of high early strength cements. As a result, the repair mortar was obtained by substituting the EF cement (maid in Japan) and the MT cement (maid in South Korea) at a rate of 60:40, and substituting the coal ash 30% and the mixing rate 35% of the artificial aggregate for natural fine aggregate.

  • PDF

Understanding the Properties of Cement Mortar with Employment of Stone Dust considering Particle Size Distribution (입도분포를 고려한 석분 사용에 따른 시멘트 모르타르 성질의 변화 이해)

  • Kang, Su-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.715-723
    • /
    • 2017
  • This study investigates the properties of a high-performance cementitious composite with partial substitution of stone dust for fine aggregate. The relationship between the properties and particle size distribution was analyzed using several analytical models. Experiments were carried out to examine the flowability, rheology, and strength of cement mortars with different stone-dust replacement ratios of 0-30 wt.%. The results showed improved flowability, lower rheological parameters (yield stress and plastic viscosity), and improved strength as the amount of stone dust increased. These results are closely related to the packing density of the solid particles in the mortar. The effect was therefore estimated by introducing an optimum particle size distribution (PSD) model for maximum packing density. The PSD with a higher amount of stone dust was closer to the optimum PSD, and the optimization was quantified using RMSE. The improvement in the PSD by the stone dust was proven to affect the flowability, strength, and plastic viscosity based on several relevant analytical models. The reduction in yield stress is related to the increase of the average particle diameter when using stone dust.