• Title/Summary/Keyword: high-strength mortar

Search Result 531, Processing Time 0.022 seconds

Impact of BS replacement mortar's application to ERCO on moisture evaporation and contraction changes (BS 치환 모르타르의 ERCO 도포시 수분증발 및 수축변화에 미치는 영향)

  • Baek, Cheol;Lee, Jae-Hyeon;Hwang, Chan-Woo;Jang, Deok-Bae;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.115-116
    • /
    • 2016
  • This study applied BS replacement mortar's ERCO to see what impact it has on moisture evaporation and contraction changes, and resulted in the following. Depending on the rate of change in length according to the cure method of BS replacement mortar, high-strength areas were shown to have a bigger increase in the rate of change in length than regular or low-strength areas, and differences in rate of change in length due to ERCO cure methods were shown to be slight. For rate of changes in mass, on the whole there was an increase in the order of dry curing, cover curing, 7-day water curing, and28-day water curing. A comprehensive view says that after removal of test piece specimens, ERCO application did not expect a sufficient curing effect in the BS area.

  • PDF

A Study on the Water Permeability and Drying Shrinkage of Polymer Cement Composites (폴리머 시멘트 복합체의 투수성 및 건조수축에 관한 연구)

  • Jo, Young-Kug
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.5
    • /
    • pp.71-77
    • /
    • 2009
  • In a range of forms, such as latex, water-soluble polymer, liquid resin, and monomer, polymer dispersions have been widely used in the construction industry as cement modifiers because of their excellent properties, such as acid-resistance, water-proofness, and good ductility in mortar and concrete. Polymer cement slurry (polymer-modified slurry) is made of cement and polymer dispersions, with a high polymer-cement ratio of 50% or more. The purpose of this study is to evaluate the water permeability and drying shrinkage of polymer cement mortar (polymer-modified mortar) and cement concrete coated by polymer cement slurry. The polymer cement mortar and cement concrete are prepared with various polymer types, polymer-cement ratios and curing methods, and are tested for water permeability, drying shrinkage and strength. The test results showed thatthe weight of permeable water of polymer cement mortar decreases with an increase in the polymer-cement ratio, reaching a minimum at the polymer-cement ratio of 20%. In particular, the weight of permeable water of St/BA-modified mortar with a polymer-cement ratio of 20% coated with St/BA-modified slurry is about 1/55 that of unmodified mortar. The EVA- and St/BA-modified slurries coated on cement concrete have about 4 or 5 times higher drying shrinkage compared to cement concrete. The strength of polymer cement mortars tends to increase with a higher polymer-cement ratio, and is considerably higher than that of unmodified mortar. It is thus concluded that polymer cement mortars coated by polymer cement slurry are effective for industrial application, and have superior properties such as waterproofness and strengths, compared with conventional cement mortar.

The Quality Properties of Mortar for Using Hydraulic Modification Sulfur as Admixture for Cement (개질유황을 시멘트 대체 혼화재로 사용하기 위한 모르타르의 품질특성)

  • Kim, Ki-Hyung;Shin, Do-Chul;Jung, Ho-Jin;Lee, Jae-Nam;Kim, Byiung-Kwon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.81-88
    • /
    • 2011
  • This study ascertained the possibility of use of sulfur abstracted from waste sulfur as a construction material through modification process and manufacturing high efficiency modification sulfur with superior quality on dispersibility and hydrophilic in normal temperature. Mechanic, behavior and chemical durability of mortar with added modification sulfur. The results of the study are as follows. The fluidity of mortar mixed with modification sulfur and compressive strength decreased as ratio of mixing of them increases. Flexural, tensile and bond strength of the mortar are also improved and shrinkage of it increases. Especially chemical durability of the mortar showed excellent resistance with the increase of ratio of mixing. Therefore this research has confirmed the modification sulfur can be used as a addmixture for cement.

  • PDF

Mechanical Properties of Mortar Containing Bio-Char From Pyrolysis (바이오숯을 함유한 모르타르의 역학적 특성)

  • Choi, Won Chang;Yun, Hyun Do;Lee, Jae Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.3
    • /
    • pp.67-74
    • /
    • 2012
  • Bio-char, obtained from biomass as a by-product of the pyrolysis process, is used successfully as a soil amendment and carbon sequester in this limited study. Recent and active research from literatures has extended the application of bio-char in the industry to promote sustainability and help mitigate the negative environmental impacts caused by carbon emissions. This study aims to investigate the feasibility of high-carbon bio-char as a carbon sequester and/or admixture in mortar and concrete to improve the sustainability of concrete. This paper presents the experimental results of an initial attempt to develop a cement admixture using bio-char. In particular, the effects of the water retention capacity of bio-char in concrete are investigated. The chemical and mechanical properties (e.g., the chemical components, microstructure, concrete weight loss, compressive strength and mortar flow) are examined using sample mortar mixes with varying replacement rates of cement that contains hardwood bio-char. The experimental results also are compared with mortar mixes that contain fly ash as the cement substitute.

Compressive Strength and Fluidity of Low Temperature Curable Mortar Using High Early Strength Cement According to Types of Anti-freezer, Accelerator for Freeze Protection and Water Reducing Agent (조강형시멘트를 사용한 저온경화형 모르타르의 압축강도 및 유동특성에 미치는 방동제, 내한촉진제 및 감수제의 영향)

  • Park, Jung-Hoon;Ki, Kyoung-Kuk;Lee, Han-Seung;Kim, Hyeong-Cheol;Choi, Hyun-Kuk;Min, Tae-Beom
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.5
    • /
    • pp.405-412
    • /
    • 2016
  • In order to examine the possibility of practical use of concrete at low-temperature environment using high early strength cement with cold resistance admixture, an experimental study on workability, freezing temperature and compressive strength of the mortar with different types of anti-freezer, water reducing agent and accelerator for freeze protection at low-temperature were evaluated. Compressive strength was increased in use of anti-freezer, especially SN anti-freezer was higher than CN anti-freezer. 0min flow was increased, the 20min flow was decreased. And 20min flow was improved in use of FR, RT water reducing agent. CF, LS accelerator for freeze protection, regardless of the type of water reducing agent, compressive strength was increased.

A Study on the Estimating the Ultra-High Strength Concrete using Rock Test Hammer (Rock Test Hammer를 사용한 초고강도 콘크리트 강도추정에 관한 기초적 연구)

  • Nam, Kyung-Yong;Kim, Seong-Deok;Choi, Suk;Lee, Young-Do
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.3
    • /
    • pp.229-237
    • /
    • 2019
  • This study examines the estimation of strength through a ultra-high strength concrete mock-up specimen using the rock compressive strength test hammer. According to the test result, the commonly used strength estimation formulae showed differences among them when the data of this test were applied. In additional, it show that these formulae underestimated the actual measurements further when the compressive strength was 30MPa or greater and deviated the distribution range of actual measurements in all strength ranges. The rock test hammer showed a higher correlation than type N Schmidt hammer regardless of the direction of hit for each type of W/B and the inclusion of coarse aggregate, and mortar showed a little higher correlation than concrete. As a result, it can be suggested that the coefficient of variation and the standard deviation of the mortar(2.26%/1.36) are lower than those of the concrete(4.06%/2.5), and the smaller the size of the coarse aggregate, the smaller the coefficient of variation and the more accurate the value.

The Properties of Hardened Slag by Alkali and Curing Method (알칼리 첨가 및 양생방법에 따른 슬래그 경화체의 특성)

  • 김원기;소정섭;배동인
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.27-32
    • /
    • 2002
  • In this research influences of type and concentration of alkali activator and curing condition on the hydration, and properties of alkali activated blast furnace slag(AAS) concrete were investigated. Sodium carbonate and sulfate were used as alkali activators and their concentration were 4~10 weight percent with Na$_2$O equivalent to binder. The curing conditions were standard curing using 23$^{\circ}C$ water and activated curing chamber at $65^{\circ}C$. Results show that in case of sodium carbonate addition high early strengths were gained by activation of early hydration, but later strength gained was slight. On the other side sodium sulfate strengths were continuously increased with adding amount and ages. Steam curing activated early hydration so that early strengths were improved but later strengths were similar to standard curing. The strength reduction of AAS mortar with sodium sulfate was less than OPC mortar in 5% sulfuric acid solution so that AAS concrete can be useful for acid-resistance concrete.

  • PDF

Influence of Replacement Ratio of Wasted Refractory Powder on the Properties of Mortar using Blast Furnace Slag and Recycled Aaggregate (폐내화물 미분말 치환율이 고로슬래그 미분말과 순환골재 사용 모르타르의 품질에 미치는 영향)

  • Song, Yuan-Lou;Baek, Cheol;Kim, Min-Sang;Lee, Jea-Hyeon;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.38-39
    • /
    • 2016
  • In this research, the possibility of wasted refractory powder pulverized from refractory block as an expansive admixture and additional alkaline stimulant for class two and three blast furnace slag cements (BSC) was assessed with its high content of free CaO or free MgO. As the replacement ratios of wasted refractory powder and blast furnace slag were increased, flow and air content were decreased, while unit volume weight was increased under same conditions. Compressive strength of mortar was increased with increased replacement ratio of wasted refractory powder, especially, in the case of class three BSC, the highest compressive strength was obtained when wasted refractory powder was replaced 10 %.

  • PDF

Influence of Replacement Ratio of Wasted Refractory Aggregate on the Properties of Mortar using Blast Furnace Slag and Recycled Aggregate (폐내화물 골재 치환율이 고로슬래그 미분말과 순환골재 사용 모르타르의 품질에 미치는 영향)

  • Song, Yuan-Lou;Moon, Byeong-Yong;Kim, Min-Sang;Lee, Jea-Hyeon;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.139-140
    • /
    • 2016
  • In this research, the possibility of wasted refractory aggregate pulverized from refractory block as an expansive admixture and additional alkaline stimulant for class two and three blast furnace slag cements (BSC) was assessed with its high content of free CaO or free MgO. As the replacement ratios of wasted refractory powder and blast furnace slag were increased, flow and air content were decreased, while unit volume weight was increased under same conditions. Compressive strength of mortar was increased with increased replacement ratio of wasted refractory powder, especially, in the case of class three BSC, the highest compressive strength was obtained when wasted refractory aggregate was replaced 2%.

  • PDF

Biocementation of Concrete Pavements Using Microbially Induced Calcite Precipitation

  • Jeong, Jin-Hoon;Jo, Yoon-Soo;Park, Chang-Seon;Kang, Chang-Ho;So, Jae-Seong
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.7
    • /
    • pp.1331-1335
    • /
    • 2017
  • In this study, the feasibility of introducing calcite-forming bacteria into concrete pavements to improve their mechanical performance was investigated. Lysinibacillus sphaericus WJ-8, which was isolated in a previous study and is capable of exhibiting high urease activity and calcite production, was used. When analyzed via scanning electron microscopy (SEM) and X-ray diffraction, WJ-8 showed a significant amount of calcite precipitation. The compressive strength of cement mortar mixed with WJ-8 cells and nutrient medium (urea with calcium lactate) increased by 10% compared with that of the controls. Energy dispersive x-ray spectroscopy analyses confirmed that the increase in strength was due to the calcite formed by the WJ-8 cells.