• Title/Summary/Keyword: high-strength concrete columns

Search Result 388, Processing Time 0.04 seconds

Estimation of Optimum PP Fiber Content for the Spalling Control of High Strength Reinforced Concrete Columns (고강도 철근콘크리트 기둥의 폭열제어를 위한 최적의 PP섬유함유량 산정)

  • Kim, In Ki;Yoo, Suk Hyeong;Shin, Sung Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.2
    • /
    • pp.155-163
    • /
    • 2007
  • High Strength Concrete (HSC) has weakness that in a fire, it is spalled and brittles. The phenomenon of spalling is made by water vapor's (resulting from evaporation in the material at over $100{^{\circ}C}$)' being confined in watertight concrete. As the concrete strength increases, the degree of damage caused by the spalling becomes more serious because of the permeability. It is reported that the polypropylene(PP) fiber has an important role in protecting concrete from spalling and the optimum dosage of PP fiber is 0.2%. This study was conducted on the nonreinforced concrete specimens. The high-temperature behavior of high-strength reinforced concrete columns with various concrete strength and various dosage of PP fibers was investigated in this study. The results show that the ratio of unstressed residual strength of columns increases as the concrete strength increases and the ratio of unstressed residual strength of columns increases as the dosage of PP fiber increases from 0% to 0.2%, however, the effect of fiber dosage on residual strength of column barely changes above 0.2%.

Hysteric Behavior of Ultra-High Strength RC Columns (초고강도 RC 기둥의 이력특성에 관한 실험적 연구)

  • Kim Jong Keun;Ahn Jong Mun;Han Beom Seok;Shin Sung Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.31-34
    • /
    • 2005
  • An experimental investigation was conducted to examine the hysteric behavior of Ultra-High strength concrete columns for the requirement of ACI provision. Seven 1/3 scaled columns were fabricated to simulate an 1/2 story of actual structural members with the cross section $300\times300mm$ and the shear span ratio 4. The main variables are axial load ratio, configuration and volumetric ratio of transverse reinforcement. It has been found that the behavior of columns was affected by axial load ratio rather than the amount and the configuration of transverse reinforcement. Consequently, to secure the ductile behavior of 100MPa Ultra-High strength concrete columns, ACI provision for the requirement of transverse steel may considered axial level and the detail of transverse reinforcement.

  • PDF

Development and Application of CFT without Fire Protection using High Performance Steel and Concrete

  • Hong, Seok-Beom;Kim, Woo-Jae;Park, Hee-Gon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.3
    • /
    • pp.272-281
    • /
    • 2013
  • Concrete filled tube (CFT) columns, which consist of a steel tube filled with concrete, combine the benefits of the two materials. The steel tube provides a confining pressure to the concrete, while the local buckling of steel plate can be prevented by the concrete core. CFT columns also have a high fire resistance due to the heat storage effect of concrete under fire. For this reason, it is possible to develop CFT columns without fire protection measures. CFT columns without fire protection have many advantages, including quality control, cost reduction, better space efficiency and a shorter construction period. Due to these advantages, studies on the development of CFT columns without fire protection measures have been performed. However, CFT columns lose their bearing capacity under fire because the steel tube is exposed to the outside. As a result, the structure is collapsed, causing significant damage. In this research, we made a CFT column using high strength concrete (100 MPa) and high strength steel (800 MPa). We use steel fiber and nylon fiber with concrete to provide fire resistance. We perform the fresh concrete experiment and investigate the fire resistance of the CFT column (${\Box}400{\times}400{\times}15{\times}3000mm$) under loading. To investigate the effect of steel fiber on increasing fire resistance, we compare the fire resistance time according to the steel fiber. Through the test, it was found that the CFT specimen with steel fiber had better fire resistance performance than other cases.

Hysteritic Behavior of High-strength R/C Columns Subjected to Lateral Load Reversals (반복 횡하중을 받는 고강도 철근콘크리트 기둥의 이력거동)

  • 이리형;김성수;이원호;이재연;이용택;강대훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.337-342
    • /
    • 1994
  • This experimental study is aiming to investigate the hysteritic behavior of high-strength R/C columns subjected to axial load and lateral load reversals. The five 1/4 scaled specimens were made of high-strength concrete with the design strength load(n=0.2f'cAg, n=0.4f'cAg) and type of transverse reinforcement. From the test results, strength and stiffness degradation of columns under higher axial load is much more serious than that under lower axial load. ductility of columns is enhansed with increasing amount of transverse reinforcement, shear strength is depended on the level of axial load.

  • PDF

Confinement Effect by Plate Type Lateral Reinforcement and Investigation of the Possibility for Use of High Strength Steel Bars in Reinforced Concrete Columns (횡방향 판재에 의한 횡구속 효과 및 철근콘크리트 기둥에서 고강도 철근의 사용성 검토)

  • Cho, Young-Jae;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.643-650
    • /
    • 2012
  • The limitation of the yield strength in reinforced concrete columns is given for the effective use of high-strength steel bar, because very high-strength steel bar does not yield while concrete fails in compression. In order to overcome this limitation, it is required to increase peak strain of the concrete. The objective of this study is to examine the confinement effect of plate type lateral reinforcement in reinforced concrete columns. From this experimental study, the reinforced concrete columns confined by plate type carbon fiber sheets showed higher compressive strength and peak concrete strain comparing to the unconfined columns. The confinement effect is higher when cross-sectional type is a circular one than a square one. Moreover, the confinement effect was also higher for circular type confinement. Based on this study, high-strength steel bars with strength exceeding 800 MPa can be effectively used for reinforced concrete columns confined by plate type lateral reinforcements.

Ductility of Circular Hollow Columns with Internal Steel Tube (강관 코아 합성 중공 기둥의 연성 거동 연구)

  • 강영종;한승룡;박남회
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.183-188
    • /
    • 2002
  • In locations where the cost or concrete is relatively high, or in situations where the weight or concrete members is to be kept to a minimum, it may be economical to use hollow reinforced concrete vertical members. Hollow reinforced concrete columns with low axial load, moderate longitudinal steel percentage, and a reasonably thick wall were found to perform in a ductile manner at the flexural strength, similar to solid columns. However, hollow reinforced concrete columns with high axial load, high longitudinal steel percentage, and a thin wall were found to behave in a brittle manner at the flexural strength, since the neutral axis is forced to occur away from the inside face of the tube towards the section centroid and, as a result, crushing of concrete occurs near the unconfined inside face of the section. If, however, a steel tube is placed near the inside face of a circular hollow column, the column can be expected not to fail in a brittle manner by disintegration of the concrete in the compression zone. Design recommendation and example by moment-curvature analysis program for curvature ductility are presented. Theoretical moment-curvature analysis for reinforced concrete columns, indicating the available flexural strength and ductility, can be conducted providing the stress-strain relation for the concrete and steel are known. In this paper, a unified stress-stain model for confined concrete by Mander is developed for members with circular sections.

  • PDF

An Experimental Study on the Behavior of Reinforced Concrete Columns Subjected Longitudinal Steel Ratio. (철근비 변화에 따른 철근콘크리트 기둥의 거동에 관한 실험적 연구)

  • 조성찬;장정수;김광석;박진희;김윤용;한상훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.284-292
    • /
    • 1995
  • This paper is on experimental study on the behavior of reinforced concrete columns subjected to longitudinal steel ratio To investigate the effects of concrete strength and longitedinal steel ratio on the behavior of reinforced concrete columns. a series of tests were carried out for thirty-six tied reinforced concrete columns with a 100mm square cross section and three slendemess ratio of 15, 30 and 50. And To study and illustrate the change of the ultimate loads and that of displacements, two different concrete strength of 180,26kfg/$\textrm{cm}^2$, 819,36kfg/$\textrm{cm}^2$ and five different longitudinal steel ratio of 0.5, 1.0, 4.0, 5.7 and 10.3% were used. The boundary conditions at the ends were both hinged and the end eccentricities (17mm) were equal and of the same sign. While the ultimate load capacity of high-strength concrete column was much increased when the columns were short, that was not when the columns were slender. The effect of longitudinal steel ratio on the increased of ultimate load of column was more evident for slender columns than for short ones and the ultimate of longitudinal steel ratio were more pronounced with increasing concrete strength. The more inserted the longitudinal steel, the more increased the ultimate load, but the superabundance of longitudinal steel ratio over the limitation of maximum steel ratio in ACI code was used, it was showed that the ultimate load was rather decreased.

  • PDF

A Study on the Lateral Confinement Effects of Spiral High-Strength Concrete Columns (나선근에 의한 고강도 콘크리트 기둥부재의 횡보강효과에 관한 연구)

  • 박훈규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.547-552
    • /
    • 1998
  • Lateral pressure by circular reinforcement greatly enhances the maximum strength and ductility of spiral columns. The lateral confinement effects will be improves ductility of high-strength concrete. The major purpose of this paper is to study on the improvements of maximum strength and strain at that point of spiral concrete columns subject to axial loads. For this purpose, this study collected the other analytical results and the experimental data that has been performed by a lot of worldwide researchers and also analyzed it statistically. As the result, the theoretical equation for predict maximum strength and strain at that point was proposed. It is based on calculation of lateral confinement pressure generated by circular reinforcement, and the resulting improvements in strength and ductility of confined concrete.

  • PDF

Seismic behaviour of concrete columns with high-strength stirrups

  • Wang, Peng;Shi, Qingxuan;Wang, Feng;Wang, Qiuwei
    • Earthquakes and Structures
    • /
    • v.18 no.1
    • /
    • pp.15-25
    • /
    • 2020
  • The seismic behaviour of reinforced concrete (RC) columns made from high-strength materials was investigated experimentally. Six high-strength concrete specimen columns (1:4 scale), which included three with high-strength stirrups (HSSs) and three with normal-strength stirrups (NSSs), were tested under a combination of high axial and reversed cyclic loads. The effects of stirrup strength and the ratio of transverse reinforcement on the cracking patterns, hysteretic response, strength, stiffness, ductility, energy dissipation and strain of transverse reinforcement were studied. The results indicate that good seismic behaviour of an RC column subjected to high axial compression can be obtained by using a well-shaped stirrup. Stirrup strength had little effect on the lateral bearing capacity. However, the ductility was significantly modified by improving the stirrup strength. When loaded with a large lateral displacement, the strength reduction of NSS specimens was more severe than that of those with HSSs, and increasing the stirrup strength had little effect on the stiffness reduction. The ductility and energy dissipation of specimens with HSSs were superior to those with NSSs. When the ultimate displacement was reached, the core concrete could be effectively restrained by HSSs.

Experiments on Second -Order Behavior of High Strength Concrete Columns (고강도 콘크리트 기둥의 2계 거동에 관한 실험적 연구)

  • 김진근;양주경
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.167-172
    • /
    • 1992
  • To analyze the effects compressive strength of concrete and longitudinal steel ratio on second-order moment of columns, 30tied rein reinforced concrete columns with hinged ends were tested. The 80mm square cross section was used and the amount of eccentricity was 24mm. The compressive strengths of column specimens with slenderness ratios of 10, 60, and 100were 250, 648 and 880kg/$\textrm{cm}^2$, and the longitudinal steel ratios were 1.98%(4-D6) and 3.95%(8-D6). The ratio of ultimate load capacity to that of short column with the same eccentricity (Pu/Pn) was much decreased at high slenderness ratio with increasing the compressive strength of concrete. And the lateral displacement of slender column at the ultimate load was decreased as the strength was increased. These are due to that at high slenderness ratio the load capacity and behavior of column are affected by flexural rigidity. And, it was also found that with increasing steel ratio, the value of Pu/Pn and the lateral displacement at the ultimate load were larger for the same slenderness ratio.

  • PDF