• Title/Summary/Keyword: high-strength bolt

Search Result 164, Processing Time 0.021 seconds

Evaluation of the Bending Performance of a Modified Steel Grid Composite Deck Joint (격자형 강합성 바닥판의 수정된 이음부에 대한 휨성능 평가)

  • Shin, Hyun-Seop;Park, Ki-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.4
    • /
    • pp.38-47
    • /
    • 2013
  • For the joint connection of the precast steel grid composite decks, the prefabricated joint which is composed of concrete shear key and high-tension bolts was already proposed. In this study, for the purpose of increasing the bending stiffness and bending strength of the proposed prefabricated joint section details of the proposed joint are modified, and through experimental tests the bending performance, such as stiffness and strength of a modified joint, is compared with those of the proposed joint. Test and analysis results show that the shear cracks in the concrete shear key are clearly reduced by the strengthening of the shear key using shear studs and additional rebars. According to analysis results of the moment-curvature relationship, bending stiffness of the modified joint is about 47% greater than the stiffness of the proposed joint. Furthermore, the modified joint has about 32% greater bending strength than the proposed joint. Compared to specimens without the joint the modified joint has same or slightly higher bending strength, but about 37% lower bending stiffness.

Structural Integrity Assessment of High-Strength Anchor Bolt in Nuclear Power Plant based on Fracture Mechanics Concept (원자력발전소 고강도 앵커 볼트의 파괴역학적 건전성평가)

  • Lim, Eun-Mo;Huh, Nam-Su;Shim, Hee-Jin;Oh, Chang-Kyun;Kim, Hyun-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.7
    • /
    • pp.875-881
    • /
    • 2013
  • The failure of a bolted joint owing to stress corrosion cracking (SCC) has been considered one of the most important structural integrity issues in a nuclear power plant. In this study, the failure possibility of bolting, which is used to support the steam generator of a pressurized water reactor, owing to SCC and brittle fracture was evaluated in accordance with guidelines proposed by the Electric Power Research Institute, which are called the Reference Flaw Factor method. For this evaluation, first, detailed finite element stress analyses were conducted to obtain the actual nominal stresses of bolting in which either service loads or bolt preloads were considered. Based on these nominal stresses, the structural integrity of bolting was addressed from the viewpoints of SCC and toughness. In addition, the accuracy of the EPRI Reference Flaw Factor for assessing bolting failure was investigated using finite element fracture mechanics analyses.

Evaluating long-term relaxation of high strength bolts considering coating on slip faying surface

  • Nah, Hwan-Seon;Lee, Hyeon-Ju;Choi, Sung-Mo
    • Steel and Composite Structures
    • /
    • v.16 no.6
    • /
    • pp.703-718
    • /
    • 2014
  • The initial clamping forces of high strength bolts subjected to different faying surface conditions drop within 500 hours regardless of loading, any other external force or loosening of the nut. This study develops a mathematical model for relaxation confined to creep on a coated faying surface after initial clamping. The quantitative model for estimating relaxation was derived from a regression analysis for the relation between the creep strain of the coated surface and the elapsed time for 744 hours. This study establishes an expected model for estimating the relaxation of bolted joints with diverse coated surfaces. The candidate bolts are dacro-coated tension control bolts, ASTM A490 bolt, and plain tension control bolts. The test parameters were coating thickness, species of coating. As for 96, 128, 168, and $226{\mu}m$ thick inorganic zinc, when the coating thickness was increased, relaxation after the initial clamping rose to a much higher range from 10% to 18% due to creep of the coating. The amount of relaxation up to 7 days exceeded 85% of the entire relaxation. From this result, the equation for creep strain can be derived from a statistical regression analysis. Based on the acquired creep behavior, it is expected that the clamping force reflecting relaxation after the elapse of constant time can be calculated from the initial clamping force. The manufacturer's recommendation of inorganic zinc on faying surface as $75{\mu}m$, appears to be reasonable.

A study on the Fatigue Propeties of Boron Steel(AISI 51B20) (보론 첨가강(AISI 51B20재)의 피로특성에 관한 연구)

  • Lee, Jong-Hyeong;Lee, Gyeong-Mo;Yun, Seong-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.174-178
    • /
    • 2001
  • Chrome-molybden steel or chrome steel for machine structures has been shown to excellent hardenability adding boron of a small amount at low carbon steel. These days, boron steel has been used high strength bolt and wear resistant components of construction equipment. SEM results showed classical fatigue fractures, consist with surface crack initiation. The specimens were tested repeatedly(9 times) under controlled load rotary bending fatigue tests. In the study, the fatigue crack initiation as well as fatigue crack growth behavior and the fracture mechanism were investigated through observations of fracture of boron steel surface(AISI 51B20).

  • PDF

Structural Response of Reinforced Concrete Beams Strengthened with CERP Rod

  • Moon Do-Young;Sim Jong-Sung;Oh Hong-Seob
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.1085-1090
    • /
    • 2005
  • Rod-type fiber reinforced polymer plastics(FRPs) similar to reinforcing steel bars have rarely been considered. In this study, an experiment was performed using beams strengthened with rod-type CFRPs and high-strength mortar overlay. The test results show that the strengthened beams not only had improved endurance limits but also improved load carrying capacities, stiffness values, and cracking loads as compared to a non-strengthened beam. Strengthened beams anchored with bolts throughout their entire span had more efficient structural behaviors, including composite behavior on the interface between the concrete and mortar, and load carrying capacity, than a strengthened beam anchored only on the end block.

An Experimental Study on Behavior of Field Splice Joints of Longitudinal Rib in Orthotropic Steel Decks (강상판 종리브 현장연결부의 실험적 거동 특성)

  • Choi, Dong Ho;Choi, Hang Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.6
    • /
    • pp.621-629
    • /
    • 2001
  • This study consists of static and fatigue tests to evaluate the behavior on the field splice joint of longitudinal rib in orthotropic steel deck specimens. Specifically, static and influence surface tests are performed for the stress distribution at the scallop area and high-strength bolt connection of longitudinal rib to examine the existence of handhole cover plate and the effect of eccentric loads. The ultimate strength of the field splice joint of longitudinal rib is obtained. In fatigue tests, cracks are observed at the scallop in the lower level test and the catastrophic failure of longitudinal rib is occurred following the failure of handhole cover plate in the higher level test. This study gives a basis for the better understanding of the field splice joint of longitudinal rib.

  • PDF

Fretting Fatigue Behavior of High Strength Aluminum Alloys (고강도 알루미늄 합금의 프레팅 피로거동)

  • Choi, Sung-Jong;Lee, Hak-Sun;Lee, Cheol-Jae;Kim, Sang-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.197-204
    • /
    • 2007
  • Fretting is a contact damage process that occurs between two contact surfaces. Fretting fatigue reduces fatigue strength of the material due to low amplitude oscillatory sliding and changes in the contact surfaces of strongly connected machine and structure such as bolt, key, pin, fixed rivet and connected shaft, which have relative slip of repeatedly extreme low frequency amplitude. In this research, the fretting fatigue behavior of 2024-T3511 and 7050-T7451 aluminum alloys used mainly in aircraft and automobile industry were experimentally estimated. Based on this experimental wort the following results were obtained: (1) A significant decrease of fatigue lift was observed in the fretting fatigue compared to the plain fatigue. The fatigue limit of 2024-T3511 aluminum alloy decreased about 59% while 7050-T7451 aluminum alloy decreased about 75%. (2) In 7050-T7451 specimen using ATSI4030 contact pad, crack was initiated more early stage than using 2024-T3511 contact pad. (3) In all specimens, oblique cracks were initiated at contact edge. (4) Tire tracks and rubbed scars were observed in the oblique crack region of fracture surface.

Tensile Behavior of Stud Bolt Connections (스터드 볼트 접합부의 인장 거동에 관한 연구)

  • 이태석;김승훈;서수연;이리형;홍원기
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.4
    • /
    • pp.321-328
    • /
    • 2001
  • This paper presents the tensile behavior of stud connections installed between reinforced concrete and steel members. Eight specimens are tested to verify the factors influencing the tensile behavior of the connection. Major variables considered in the test are the reinforcement ratios of concrete member and connection details. Test results indicate that the reinforcing bars near stud bolts contribute to the increase of the tensile strength of the member as well as to the reduction of brittle failure. It is shown that C-type or U-type connection has relatively high ductility. From the evaluation on the tensile strength of test results including those of peformed by previous researchers, it was shown CCD (Concrete Capacity Design) method overestimated the strength. In this paper, the reduction factor of 0.75 ø instead of ø is suggested for design purpose of the stud connection.

A study on weight reduction of bracket using CAE program (CAE 프로그램을 이용한 브래킷 경량화에 관한 연구)

  • Kang, Hyung-Suk;Han, Bong-Suk;Han, Yu-Jin;Choi, Doo-Sun;Kim, Tae-Min;Shin, Bong-Cheol;Song, Ki-Hyeok
    • Design & Manufacturing
    • /
    • v.12 no.3
    • /
    • pp.25-30
    • /
    • 2018
  • Recently The automotive industry is trying to increase the energy efficiency by reducing the weight of the car body and engine components as a way to achieve high energy efficiency. In particular, the reduction of the weight of the vehicle through the weight reduction of the vehicle body has the advantage that the fuel consumption and the output can be improved. But at the same time, there is the disadvantage that the strength becomes weak due to the reduction of the material thickness. Therefore, in order to overcome these disadvantages, materials with high strength according to the unit thickness have been actively developed, and researches for applying them have also been increasing. In this study, we will investigate the application of cold rolled steel sheet, which is a lightweight material, to a horn bracket that secures a installed in an automobile engine room. The horn bracket secures the horn on the car engine and is bolted to the outer wall of the engine. The momentum is acted on the bracket due to the distance between the bolt fastening part and the car horn installed on the bracket end side. Therefore, the body part of the bracket is more likely to be destroyed by the influence of the continuous stress. In this paper, design optimization for weight reduction and strength enhancement was performed to solve this problem, and possibility of applying the rolled steel sheet material as lightweight material by tensile test and fabrication was confirmed.

An Analytical Study for the Strength of the High Tension Bolted Joints in Plate Girder (Plate Girder 볼트 이음부 강도에 관한 해석적 연구)

  • Ham, Jun-Su;Hwang, Won-Sup;Yang, Sung-Don;Chung, Jee-Seung
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.4
    • /
    • pp.469-478
    • /
    • 2012
  • In this study, structural behavior of high tension bolted connections was analyzed in order to investigate effective utilizations. Also, the simplified numerical analysis method showing bolt behavior was proposed using the connector element in the ABAQUS, a nonlinear finite element program and verified by numerical analyses on the basis of the experiment of previous study. In an effort to analyze strength properties of plate girder which high tension bolts are applied to, the effects of each design parameter were compared and analyzed after moment-displacement relations were investigated according to design parameters (upper flange, lower flange, upper and lower flange, web) by action force standards.