• 제목/요약/키워드: high-strength

검색결과 13,297건 처리시간 0.04초

Shear-fatigue behavior of high-strength reinforced concrete beams under repeated loading

  • Kwak, Kae-Hwan;Park, Jong-Gun
    • Structural Engineering and Mechanics
    • /
    • 제11권3호
    • /
    • pp.301-314
    • /
    • 2001
  • The purpose of this experimental study is to investigate the damage mechanism due to shear-fatigue behavior of high-strength reinforced concrete beams under repeated loading. The relationship between the number of cycles and the deflection or strain, the crack growths and modes of failure with the increase of number of cycles, fatigue strength, and S-N curve were observed through a fatigue test. Based on the fatigue test results, high-strength reinforced concrete beams failed at 57-66 percent of static ultimate strength for 2 million cycles. The fatigue strength at 2 million cycles from S-N curves was shown as about 60 percent of static ultimate strength. Compared to normal-strength reinforced concrete beams, fatigue capacity of high-strength reinforced concrete beams was similar to or lower than fatigue capacity of normal-strength reinforced concrete beams. Fatigue capacity of normal-strength reinforced concrete beams improved by over 60 percent.

80 MPa급 고강도 콘크리트를 적용한 RC 바닥판의 피로 성능 평가 (Evaluation of Fatigue Performance of RC Deck Slabs by 80 MPa High-Strength Concrete)

  • 배재현;황훈희;유동민;박성용
    • 한국안전학회지
    • /
    • 제32권4호
    • /
    • pp.66-72
    • /
    • 2017
  • Recently, the use of high-strength concrete is increasing due to the trend of constructing high-rise and long span structures. The benefit of using the high-strength concrete is that it increases the durability and strength while it reduces the cross-sectional area of the bridge deck slabs. Moreover, it offers more safety as these bridge deck slabs applying high-strength requires strict structural performance verification. In this study, the fatigue performance of the bridge deck slabs applying 80 MPa high-strength concrete was verified through various experiments. The experimental results showed that the specimens satisfy the conditions of flexural strength, punching shear strength, deflection and cracking. In conclusion, the bridge deck slabs designed by 80 MPa high-strength concrete are enough safe despite of its low thickness.

Seismic behaviour of concrete columns with high-strength stirrups

  • Wang, Peng;Shi, Qingxuan;Wang, Feng;Wang, Qiuwei
    • Earthquakes and Structures
    • /
    • 제18권1호
    • /
    • pp.15-25
    • /
    • 2020
  • The seismic behaviour of reinforced concrete (RC) columns made from high-strength materials was investigated experimentally. Six high-strength concrete specimen columns (1:4 scale), which included three with high-strength stirrups (HSSs) and three with normal-strength stirrups (NSSs), were tested under a combination of high axial and reversed cyclic loads. The effects of stirrup strength and the ratio of transverse reinforcement on the cracking patterns, hysteretic response, strength, stiffness, ductility, energy dissipation and strain of transverse reinforcement were studied. The results indicate that good seismic behaviour of an RC column subjected to high axial compression can be obtained by using a well-shaped stirrup. Stirrup strength had little effect on the lateral bearing capacity. However, the ductility was significantly modified by improving the stirrup strength. When loaded with a large lateral displacement, the strength reduction of NSS specimens was more severe than that of those with HSSs, and increasing the stirrup strength had little effect on the stiffness reduction. The ductility and energy dissipation of specimens with HSSs were superior to those with NSSs. When the ultimate displacement was reached, the core concrete could be effectively restrained by HSSs.

강섬유보강 고강도 철근콘크리트 부재의 인장강성모델 개발 (Development of Tension Stiffening Models for Steel Fibrous High Strength Reinforced Concrete Members)

  • 홍창우;윤경구;이정호;박제선
    • 콘크리트학회논문집
    • /
    • 제11권6호
    • /
    • pp.35-46
    • /
    • 1999
  • The steel fiber reinforced concrete may affect substantially to the tension stiffening at post cracking behavior. Even if several tension stiffening models exist, they are for plain and normal strength concrete. Thus, the development of tension stiffening models for steel fibrous high strength RC members are necessary at this time when steel fiber reinforced and high strength concretes are common in use. This paper presents tension stiffening effects from experimental results on direct tension members with the main variables such as concrete strength, concrete cover depth, steel fiber quantity and aspect ratio. The comparison of existing models against experimental results indicated that linear reduced model closely estimated the test results at normal strength level but overestimated at high strength level. Discontinuity stress reduced model underestimated at both strength levels. These existing models were not valid enough in applying at steel fibrous high strength concrete because they couldn't consider the concrete strength nor section area. Thus, new tension stiffening models for high strength and steel fiber reinforced concrete were proposed from the analysis of experimental results, considering concrete strength, rebar diameter, concrete cover depth, and steel fiber reinforcement.

Permanent Shotcrete Tunnel Linings 구축을 위한 고성능 숏크리트 개발 II (II: 용수부에서의 조강시멘트 적용) (Development of High Performance Shotcrete for Permanent Shotcrete Tunnel Linings II(II: Application of high-early strength cement in sump water condition))

  • 박해균;이명섭;김재권;안병제
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.695-702
    • /
    • 2002
  • Shotcrete (or Sprayed concrete) has been used as an important support material in New Austrian Tunnelling Method (NATM). Since the mid of 1990, permanent shotcrete tunnel linings such as Single-shell, NMT (Norwegian Method of Tunnelling) has been constructed in many countries for reducing the construction time and lowing construction costs instead of conventional in-situ concrete linings. Among essential technologies for successful application of permanent shotcrcte linings, high performance shotcrete providing high strength, high durability, better pumpability has to be developed in advance as an integral component. This paper presents the Ideas and first experimental attempts to increase early strength and bond strength of wet-mixed Steel Fiber Reinforced Shotcrete(SFRS) in sump water condition. In order to increase early strength, a new approach using high-early strength cement with liquid alkali-free accelerator has been investigated From the results, wet-mix SFRS with high-early strength cement and alkali-free accelerator exhibited excellent early strength improvement compared to the ordinary portland content and good bond strength even under sump water condition.

  • PDF

고강도 콘크리트용 혼화재를 사용한 콘크리트의 물성에 관한 실험적 연구 (An Experimental Study on Physical Properties of Concrete using Admixtures for High Strength Concrete)

  • 이승한;배재길;이종석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1994년도 봄 학술발표회 논문집
    • /
    • pp.203-208
    • /
    • 1994
  • These tests were conducted to get a device high strength concrete products in factory using admixtures for high strength concrete. The superplasticzer was used to compensate low slump of base concrete keeping its slump up about $6\pm1cm$. To examine the property for strength revelation of concrete using admixtures for high strength concrete, steam and standard curing were compared each other. Test results show that admixtures for high strength concrete is effective in steam curing and compressive strength 500kgf/$\textrm{cm}^2$ is obtained at one day, 650kgf/$\textrm{cm}^2$ at 28days as added to concrete at the ratio of 10-15%, and 740kgf/$\textrm{cm}^2$ at the ratio of 30%. Therefore admixtures for high strength concrete is effective in steam curing and make it possible to get high strength concrete using only steam curing not using autoclave curing.

  • PDF

Structural Performance of 800 MPa High-Strength Steel Members and Application to Highrise and Mega Building Structures

  • Lee, Cheol-Ho
    • 국제초고층학회논문집
    • /
    • 제6권3호
    • /
    • pp.249-259
    • /
    • 2017
  • The use of high-strength steels in construction of highrise and mega building structures can bring about many technological advantages from fabrication to erection. However, key design criteria such as local and lateral stability in current steel design specifications were developed based on tests of ordinary steels which have stress-strain characteristics very different from that of high strength steels. A series of tests on 800 MPa tensile strength steel (HSA800) members are summarized in this paper which were conducted to investigate the appropriateness of extrapolating current ordinary-steel based design criteria to high strength steels. 800 MPa I-shape beam specimens designed according to flange local buckling (FLB) criteria of the AISC Specification developed a sufficient strength for elastic design and a marginal rotation capacity for plastic design. It is shown that, without introducing distinct and significant yield plateau to the stress-strain property of high-strength steel, it is inherently difficult to achieve a high rotation capacity even if all the current stability limits are met. 800 MPa I-shape beam specimens with both low and high warping rigidity exhibited sufficient lateral torsional buckling (LTB) strength. HSA800 short-column specimens with various edge restraint exhibited sufficient local buckling strength under uniform compression and generally outperformed ordinary steel specimens. The experimental P-M strength was much higher than the AISC nominal P-M strength. The measured residual stresses indicated that the impact of residual stress on inelastic buckling of high-strength steel is less. Cyclic seismic test results showed that HSA800 members have the potential to be used as non-ductile members or members with limited ductility demand in seismic load resisting systems. Finally, recent applications of 800 MPa high strength steel to highrise and mega building structures in Korea are briefly presented.

조기강도 콘크리트의 내구특성 (Durability Characteristics of High-Early-Strength Concrete)

  • 원종필;김현호;안태송
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.991-996
    • /
    • 2001
  • The long-term durability characteristics of high-early-strength concrete were assessed. The effect of long-term durability characteristics of high-early-strength concrete were investigated. In experiment, two different types of fiber were adopted for improvement of durability. High-early-strength fiber reinforced concretes using regulated-set cements are compared with high-early-strength concrete without fiber. The durability performance of the laboratory-cured high-early-strength concrete specimens was determined by conducting an accelerated chloride permeability, abrasion resistance, freeze-thaw, surface deicer salt scaling and wet-dry repetition test. The results indicated that incorporation of fibers enhance durability performance.

  • PDF

고강도 콘크리트의 역학적 특성 및 현장 타설 실험 연구 (An Experimental Study on Mechanical Behavior and Field Placement of High Strength Concrete)

  • 오병환;정원기;이동근;장봉석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.83-86
    • /
    • 1994
  • High strength concrete increasingly used in various countries. Recently, great attetion is also paid to the high strength concrete in this country. To promote the actual application of high strength concrete, several series of high strength concrete have been made and applied to actual structures. The mechanical properties and the temperature rise due to generation of hydration heat have been also studied. The present study provides a firm base for the actual application of high strength concrete in the field.

  • PDF

고온을 받은 고강도 콘크리트의 역학적 특성에 관한 실험적 연구 (An Experimental Study on the Mechanical Behavior of High-Strength Concretes Subjected to High Temperature)

  • 양근혁;홍성우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.25-28
    • /
    • 2005
  • The experimental results on the mechanical behavior of high-strength concretes subjected to high temperature were presented. Main variables were heating temperature, heating continuance time, and cooling condition. The compressive strength properties of high strength concrete(HSC) varied differently with temperature than those of normal strength concrete(NSC). HSC had higher rates of strength loss than NSC in the temperature range of between $20^{circ}C$ and $400^{circ}C$. Especially, HSC exploded in $400^{circ}C$ of high temperature.

  • PDF