• Title/Summary/Keyword: high-speed.high-precision machining system

Search Result 129, Processing Time 0.028 seconds

Effects of Design Alterations on the Vibration Suppression of a Machine Tool Structure (공작기계의 진동억제를 위한 설계개선 효과)

  • Kim, Young Jo;Ro, Seung Hoon;Shin, Ho Beom;Shin, Yun Ho;Jung, Keun Sup;Nam, Kyu Dong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.122-129
    • /
    • 2016
  • In modern industries, in whichwhere high productivity is one of the most important concerns, machine tools are facing difficulties to satisfy the high high-speed operation, while and at the same time achieve the precision machining. Generally, the vibrations of the structure increase proportionally to the square of the operating speed so that the precision machining is severely damaged with increased speed. which is a must for the high productivity. Therefore, the suppression of the structural vibrations of the machine tools is the a major concern in the machine tool industry in order to achieve the high productivity and the precision machining simultaneously. In this study, the dynamic properties of a machining center structure were analyzed through the experiment and the computer simulations, and furthermore the results from those were compared to confirm the validity of the simulation model. The design alterations were deduced from the analysis and applied to the simulation model to investigate the effects of those alterations to suppress the vibrations of the machine. The result shows that the relatively simple design alterations, without redesigning the main structure of the machine, can suppress the vibrations effectively.

Development of Rapid Prototyping System using High Speed Machining of Plastics (합성수지의 고속 절삭을 이용한 쾌속조형 시스템)

  • Jung, Tae-Sung;Choi, In-Hugh;Lee, Dong-Yoon;Yang, Min-Yang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.3
    • /
    • pp.5-12
    • /
    • 2003
  • In order to reduce the lead-time and cost, many useful methods have been applied to rapid prototyping (RP) in recent years. But cutting process is still considered as one of the effective RP methods that have been developed and currently available in the industry. It also offers practical advantages in aspects of precision and versatility. However, traditional 3-axis NC machining has some inherent limitations such as the restriction of tool accessibility and the complex setup. In this work, a new rapid prototyping system with high speed 5-axis machining of plastics has been developed to overcome those limitations. And cutting experiments were conducted to determine the design factors of the system and the cutting conditions of plastics. The architecture of developed system is described in detail and the successful application examples are presented.

  • PDF

Development of Diagnosis System for Intelligent High-Speed Micro-Machining and Evaluation of Micro-Machining Characteristics (고속.지능형 마이크로머시닝을 위한 진단시스템 및 특성평가)

  • 김흥배;이우영;최성주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.993-998
    • /
    • 1997
  • The advanced technology of micro-machining is starting to penetrate our lives. This technology, with which it is possible to make micro-structures by means of processing on the order of nm (micrometer = 1/1,000 mm) or less, is realizing machines that were only part of our wildest imagination. However, the fact is that many issues remain in the quest for a variety of applications. With the advent of computing technologies, information technologies, and telecommunications technologies, we foresee the need for new approaches in design, process, and the use of materials, technologies, and people in a globalized manufacturing enterprise. A new thinking paradigm is needed to focus on quality of service on the products we design and manufacture. Factories in different regions need to be co-ordinated through use of the state-of-the-art information on productivity, diagnostics, and service evaluation of manufacturing systems could be shared among different locations and partners. In this research, We develope the internet based Diagnosis system for micro machining and evaluate its characteristics by using mechatronic sensor like Dynamometer, acoustic emission, Acceleration sensor, micro phone, vision, infra-red thermometer.

  • PDF

Measurement of Temperature Field in the Primary Deformation Zone in 2-D Orthogonal Machining Using IR (Infra-Red) Thermography (순수 2 차원 절삭에서 적외선 열화상을 이용한 주변형 영역의 온도 분포 측정)

  • Kim, Myung-Jae;Jung, Hyun-Gi;Hwang, Ji-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.8
    • /
    • pp.853-862
    • /
    • 2012
  • The present study develops a method for directly measuring the temperature field in the primary deformation zone with a high spatial resolution during 2-D orthogonal machining. This is enabled by the use of a high-speed, charge-coupled device (CCD) based, infra-red (IR) imaging system which allows characteristics of the temperature field such as the location and magnitude of the highest temperature and temperature gradient in the primary deformation zone to be identified. Based on these data, the relation between the machining temperature and the cutting conditions is investigated.

Improvement of a Stiffness for High-Speed Spindle Using the Taguchi Method (다구찌 방법을 이용한 고속주축의 강성 개선)

  • Lim, Jeong-Suk;Chung, Won-Jee;Lee, Choon-Man;Lee, Jung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.2 s.191
    • /
    • pp.127-133
    • /
    • 2007
  • The spindle system with a built-in motor can be used to simplify the structure of machine tools, to improve the machining flexibility of machine tools, and to perform the high speed machining. To improve the competition power of price to quality, spindle design is very important. Because it possesses over 10 percent of machine tool's price. The latest machine tools have rotational frequency and excellent about might and precision cutting. So it requires static and dynamic strength in the load aspect. In conclusion, the deformation of the spindle end have to extremely small displacement in static and dynamic load. In this study, On the assumption that the bearings that are supporting 24,000rpm high-speed spindle are selected in the most optimum condition, the natural frequency and deformation of the spindle end is obtained by FEM mode analysis. The Taguchi Method was used to draw optimized condition of bearing position and it's stiffness.

Numerical Design Method for Water-Lubricated Hybrid Sliding Bearings

  • Feng, Liu;Bin, Lin;Xiaofeng, Zhang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.1
    • /
    • pp.47-50
    • /
    • 2008
  • This paper presents a new water-lubricated hybrid sliding bearing for a high speed and high accuracy main shaft system, along with the numerical method used for its design. The porous material for the restrictor and the restriction parameter were chosen based on the special requirements of the water-lubricated bearing. Subsequent numerical calculations give the load capacity, stiffness, and friction power of different forms of water-lubricated bearings. The pressure distribution of the water film in a 6-cavity bearing is shown, based on the results of the numerical calculations. A comparison of oil-lubricated and water-lubricated bearings shows that the latter benefits more from improved processing precision and efficiency. An analysis of the stiffness and friction power results shows that 6-cavity bearings are the preferred type, due their greater stiffness and lower friction power. The average elevated temperature was calculated and found to be satisfactory. The relevant parameters of the porous restrictor were determined by calculating the restriction rate. All these results indicate that this design for a water-lubricated bearing meets specifications for high speed and high accuracy.

A Study on the Failure and Life Assessment of High Speed Spindle (고속주축의 고장 및 수명평가에 관한 연구)

  • Lee, Tae Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.1
    • /
    • pp.67-73
    • /
    • 2014
  • A reliability evaluation or prediction can be defined as MTBF which stands for mean time between failures (Exclusively for repairable failures). Spindle system has huge effect on performance of machine tools and working quality as well as is required of high reliability. Especially, it takes great importance in producing automobiles which includes a large number of working processes. However, it is unusually difficult to predict reliability because there are lack of data and research about reliability of spindle system. Standards and methods of examinations for reliability evaluation of machine tools are scarce at local and abroad as well. Therefore, this research is meant to improve the reliability of spindle system before mass produced with developing standards of reliability and methods of examinations through FMEA to assess reliability of spindle system in prototype stages of developing high speed spindle system of machining center.

A study on the Desing Technuque of a Process Interration CNC Lathe for High Productivity (공정집약형 CNC 선반의 설계기술에 관한 연구)

  • 박종권;최대봉;황주호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.651-657
    • /
    • 1996
  • Industrial products are getting more and more complex. The number of parts or components and the variety of manufacturing processes are increasing. This leads to rapid product oriented machine tools. The process integrated CNC lathe is one of the these machine tools which can produce numerous parts and various machining processes and reduce the lead time and non-machining time. Therefore this study deals with the design technique of a process-intergated CNC lathe which can reduce the tact time and production cost by the speed-up of the tooling system and the high-speed machining oriented construction of 2 spindles and 2 turrets.

  • PDF

Study on Thermal Behavior of Motor Integrated Spindle With Air Cooling System (공기냉각 모터내장형 주축계의 열거동에 관한 연구)

  • Lee, D.W.;Park, D.B.;Park, H.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.8
    • /
    • pp.86-91
    • /
    • 1995
  • Recently, motor integrated spindle is often used in a high speed spindle system of machine tools in order to increase machining speed. The important problem in high speed motor integrated spindle is to reduce thermal effect occured by motor and ball bearings. In this study, the effect of heat transfer from motor is investigated. The experimental equipment is composed with oil-air lubrication method, air cooling system and angular contact ball bearings. The results show that the thermal effect in motor is larger than in ball bearing until DmN 8000,000 with air cooling.

  • PDF