• Title/Summary/Keyword: high-speed train (HST) noise

Search Result 14, Processing Time 0.016 seconds

Numerical Analysis of Transmission Loss Prediction in High Speed Trains (전산해석을 이용한 동력 분산형 고속철도차량의 투과손실 예측)

  • Kim, Tae-Min;Kim, Jeung-Tae;Kim, Jung-Soo;Kim, Soo-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.8
    • /
    • pp.703-709
    • /
    • 2010
  • An analysis tool for predicting transmission loss in high speed trains based on combined use of the statistical energy analysis and the finite element methods has been proposed. The analysis utilizes a commercially available numerical solver VA ONE with imbedded NASTRAN module. The proposed analysis tool is first verified by comparing numerically predicted transmission loss of a light rail transport(LRT) structure with experimental results. The comparison shows that the numerically predicted transmission loss is similar to the experimental data. The analysis tool is then applied to the prediction of transmission loss in the high speed train(HST) currently under development. Various sub-structures such as the floor, side panel and ceiling have been numerically analyzed to predict their transmission losses. The results obtained here can be used as input data for predicting the interior noise level of the HST at design stage.

Wind Pressure Transients in the Tunnel inside a Station Caused by a Passing High Speed Train

  • Nahmkeon Hur;Kim, Sa-Ryang;Kim, Wook;Lee, Sangyeul
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1614-1622
    • /
    • 2004
  • When a High Speed Train (HST) passes through a station with no stop, effects of wind pressure transients caused by this passing train have to be considered for the safety of passengers on the platform and for the possible structural safety problems as well. In Gwangmyeong and Daejeon stations of the Korean high speed railroad, tunnels inside stations for the passing train are proposed to reduce the noise and wind pressure transients to the passengers on the platform. In the present study, transient 3-D full Navier-Stokes solutions with moving mesh to implement train movement are obtained and compared with the results obtained by the towing tank experiment. Investigations on flow phenomena for various train speeds and design modifications are also performed.

A Study to Estimate Transmission Loss of HST using a Small Scale Reverberation Chamber (소형잔향실을 이용한 고속철도 차량 구조재의 투과손실 연구)

  • Kim, Tae-Min;Kim, Jeung-Tae
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.1
    • /
    • pp.19-23
    • /
    • 2011
  • The method to reduce interior noise of train was being studied. To improve transmission loss of train is one of the best way to reduce interior noise. But, the estimate to transmission loss requires lots of the commercial costs. In this study, the method to estimate transmission loss of high speed train is proposed using a scale reverberation chamber. The result shows that a transmission loss estimated using small scale reverberation is similar to that using huge reverberation chamber. The transmission loss estimated based on small scale reverberation chamber can be optimal with respect to the commercial coasts.

Classification of Transport Vehicle Noise Events in Magnetotelluric Time Series Data in an Urban area Using Random Forest Techniques (Random Forest 기법을 이용한 도심지 MT 시계열 자료의 차량 잡음 분류)

  • Kwon, Hyoung-Seok;Ryu, Kyeongho;Sim, Ickhyeon;Lee, Choon-Ki;Oh, Seokhoon
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.4
    • /
    • pp.230-242
    • /
    • 2020
  • We performed a magnetotelluric (MT) survey to delineate the geological structures below the depth of 20 km in the Gyeongju area where an earthquake with a magnitude of 5.8 occurred in September 2016. The measured MT data were severely distorted by electrical noise caused by subways, power lines, factories, houses, and farmlands, and by vehicle noise from passing trains and large trucks. Using machine-learning methods, we classified the MT time series data obtained near the railway and highway into two groups according to the inclusion of traffic noise. We applied three schemes, stochastic gradient descent, support vector machine, and random forest, to the time series data for the highspeed train noise. We formulated three datasets, Hx, Hy, and Hx & Hy, for the time series data of the large truck noise and applied the random forest method to each dataset. To evaluate the effect of removing the traffic noise, we compared the time series data, amplitude spectra, and apparent resistivity curves before and after removing the traffic noise from the time series data. We also examined the frequency range affected by traffic noise and whether artifact noise occurred during the traffic noise removal process as a result of the residual difference.