• Title/Summary/Keyword: high-speed fuzzy inference

Search Result 39, Processing Time 0.026 seconds

Measuring System for Impact Point of Arrow using Mamdani Fuzzy Inference System (Mamdani 퍼지추론을 이용한 화살의 탄착점 측정 시스템)

  • Yu, Jung-Won;Lee, Han-Soo;Jeong, Yeong-Sang;Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.4
    • /
    • pp.521-526
    • /
    • 2012
  • The performance of arrow from a manufacturing process depends on arrow's trajectory(archer's paradox) and intensity of an impact points. Especially, when conducting a shooting experiment over and over in the same experiment condition, the intensity of impact point is an objective standard to judge the performance of the arrow. However, the analysis method for the impact point is not enough, a previous research of the arrow's performance has been focused on a skill to optimize a manufacturing variables(feathers of an arrow, barb of an arrow, arrow's shaft, weight, external diameter, spine). In this paper, We propose measurement system of arrow's impact point with Mamdani fuzzy inference system and similarity of polygon for automation of impact point's measurement. Measuring the impact point data of the arrow moving with a high speed(approximately 275km/h) by using line laser and photo diode array, then the measured data are mapped to arrow's impact point with fuzzy inference and similarity of polygon.

A Design of Power System Stabilization for SVC System Using Self Tuning Fuzzy Controller (자기조정 퍼지제어기를 이용한 SVC계통의 안정화 장치의 설계)

  • Joo, Seok-Min;Hur, Dong-Ryol;Kim, Hai-Jai
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.2
    • /
    • pp.60-67
    • /
    • 2002
  • This paper presents a control approach for designing a self tuning fuzzy controller for a synchronous generator excitation and SVC system. A combination of thyristor-controlled reactors and fixed capacitors (TCR-FC) type SVC is recognized as having the most flexible control and high speed response, which has been widely utilized in power systems, is considered and designed to improve the response of a synchronous generator, as well as controlling the system voltage. The proposed parameter self tuning algorithm of fuzzy controller is based on the steepest decent method using two direction vectors which make error between inference values of fuzzy controller and output values of the specially selected PSS reduce steepestly. Using input-output data pair obtained from PSS, the parameters in antecedent part and in consequent part of fuzzy inference rules are learned and tuned automatically using the proposed steepest decent method. The related simulation results show that the proposed fuzzy controller is more powerful than the conventional ones.

Adaptive Neuro-Fuzzy Ingerence based Torque Model of SRM (적응 뉴로퍼지 추론기법에 의한 SRM의 토오크모델)

  • 홍정표;박성준;홍순일;김철우
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.279-284
    • /
    • 1999
  • Although the switched reluctance motor (SRM) has a several advantages such as simple magnetic structure, robustness, wide range of speed characteristics and simple driving, it has a considerable inherent torque ripple and speed variation duet to the driving characteristics of pulse current waveform and the nonlinear inductance profile. The high torque ripple and speed variation inhibits wide application. The minimization of the torque ripple is very important in high performance servo drive applications, which require smooth operation with minimum torque pulsations. This paper presents the new SRM torque modeling technique for the control of instantaneous torque. The SRM is modeled by the database of torque profiles for every small variation in currents and rotor angles, which is inferred from the several measured data by the adaptive neuro-fuzzy inference technique. Simulation results demonstrating the effectiveness of proposed torque modeling technique are presented.

  • PDF

Detection of High Impedance Fault Using Adaptive Neuro-Fuzzy Inference System (적응 뉴로 퍼지 추론 시스템을 이용한 고임피던스 고장검출)

  • 유창완
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.4
    • /
    • pp.426-435
    • /
    • 1999
  • A high impedance fault(HIF) is one of the serious problems facing the electric utility industry today. Because of the high impedance of a downed conductor under some conditions these faults are not easily detected by over-current based protection devices and can cause fires and personal hazard. In this paper a new method for detection of HIF which uses adaptive neuro-fuzzy inference system (ANFIS) is proposed. Since arcing fault current shows different changes during high and low voltage portion of conductor voltage waveform we firstly divided one cycle of fault current into equal spanned four data windows according to the mangnitude of conductor voltage. Fast fourier transform(FFT) is applied to each data window and the frequency spectrum of current waveform are chosen asinputs of ANFIS after input selection method is preprocessed. Using staged fault and normal data ANFIS is trained to discriminate between normal and HIF status by hybrid learning algorithm. This algorithm adapted gradient descent and least square method and shows rapid convergence speed and improved convergence error. The proposed method represent good performance when applied to staged fault data and HIFLL(high impedance like load)such as arc-welder.

  • PDF

A Study on the Minimization of Fuzzy Rule Using Symbolic Multi-Valued Logic (기호다치논리를 이용한 Fuzzy Rule Minimization에 관한 연구)

  • 김명순
    • Journal of the Korea Society of Computer and Information
    • /
    • v.4 no.4
    • /
    • pp.1-8
    • /
    • 1999
  • In the logic where we study the principle and method of human, the binary logic with the proposition which has one-valued property that it can be assigned the truth value 'truth'or 'false'. Although most of the traditional binary logic which was drawn by human includes fuzziness hard to deal with, the knowledge for expressing it is not precise and has less degree of credit. This study uses multi-valued logic in order to slove the problem above that .When compared with the data processing ability of the binary logic, Multi-valued logic has an at a high speed. Therefore the Inference can be possible by minimization multi-valued logic in stead of using the information stead of using the information system based on the symbolic binary logic.

  • PDF

Development of Fuzzy Inference Engine for Servo Control Using $\alpha$-level Set Decomposition ($\alpha$ -레벨집합 분해에 의한 서보제어용 퍼지 추론 연산회로의 개발)

  • 홍순일;이요섭
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.3
    • /
    • pp.50-56
    • /
    • 2001
  • As the fuzzy control is applied to servo system, the hardware implementation of the fuzzy information systems requires the high speed operations, short real time control and the small size systems. The aims of this study is to develop hardware of the fuzzy information systems to be apply to servo system. In this paper, we propose a calculation method of approximate reasoning for fuzzy control based on $\alpha$ -level set decomposition of fuzzy sets by quantize $\alpha$ -cuts. This method can be easily implemented with analog hardware. The influence of quantization Bevels of $\alpha$-cuts on output from fuzzy inference engine is investigated. It is concluded that 4 quantization levels give sufficient result for fuzzy control performance of dc servo system. The hardware implementation of proposed operation method and of the defuzzification by gravity center method which is directly converted to PWM actuating signal is also presented. It is verified useful with experiment for dc servo system.

  • PDF

A Fuzzy Microprocessor for Real-time Control Applications

  • Katashiro, Takeshi
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1394-1397
    • /
    • 1993
  • A Fuzzy Microprocessor(FMP) is presented, which is suitable for real-time control applications. The features include high speed inference of maximum 114K FLIPS at 20MHz system clocks, capability of up to 128-rule construction, and handing of 8 input variables with 8-bit resolution. In order to realize these features, the fuzzifier circuit and the processing element(PE) are well optimized for LSI implementation. The chip fabricated in 1.2$\mu\textrm{m}$ CMOS technology contains 71K transistors in 82.8 $\textrm{mm}^2$ die size and is packaged in 100-pin plastic QFP.

  • PDF

Type-2 Fuzzy Logic Predictive Control of a Grid Connected Wind Power Systems with Integrated Active Power Filter Capabilities

  • Hamouda, Noureddine;Benalla, Hocine;Hemsas, Kameleddine;Babes, Badreddine;Petzoldt, Jurgen;Ellinger, Thomas;Hamouda, Cherif
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1587-1599
    • /
    • 2017
  • This paper proposes a real-time implementation of an optimal operation of a double stage grid connected wind power system incorporating an active power filter (APF). The system is used to supply the nonlinear loads with harmonics and reactive power compensation. On the generator side, a new adaptive neuro fuzzy inference system (ANFIS) based maximum power point tracking (MPPT) control is proposed to track the maximum wind power point regardless of wind speed fluctuations. Whereas on the grid side, a modified predictive current control (PCC) algorithm is used to control the APF, and allow to ensure both compensating harmonic currents and injecting the generated power into the grid. Also a type 2 fuzzy logic controller is used to control the DC-link capacitor in order to improve the dynamic response of the APF, and to ensure a well-smoothed DC-Link capacitor voltage. The gained benefits from these proposed control algorithms are the main contribution in this work. The proposed control scheme is implemented on a small-scale wind energy conversion system (WECS) controlled by a dSPACE 1104 card. Experimental results show that the proposed T2FLC maintains the DC-Link capacitor voltage within the limit for injecting the power into the grid. In addition, the PCC of the APF guarantees a flexible settlement of real power exchanges from the WECS to the grid with a high power factor operation.

Practical Civil UAV Engine Control using High-gain Observer (고이득 관측기를 이용한 실용형 민수 무인항공기 엔진 제어)

  • Jung, Byeong-In;Ahn, Dong-Man;Hong, Gyo-Young;Hong, Seung-Beom;Min-Seok, Jie
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.6
    • /
    • pp.1187-1193
    • /
    • 2011
  • In this paper, proposed controller preventing compressor surge and reducing the acceleration time of the fuel flow control system for turbo-jet engine. Turbo-jet engine controller is designed by applying fuzzy PID control algorithm and high-gain observer. Observer is used to estimate to compressor rotation speed of turbo-jet engine. Result of fuzzy inference is used as the fuel flow control inputs for preventing compressor surge and flame-out in turbo-jet engine. The controller is designed to converge to the desired speed quickly and safely. Using MATLAB to perform computer simulations verified the performance of the proposed controller.