• Title/Summary/Keyword: high-solid coatings

Search Result 72, Processing Time 0.029 seconds

Lanthanum Nickelates with a Perovskite Structure as Protective Coatings on Metallic Interconnects for Solid Oxide Fuel Cells

  • Waluyo, Nurhadi S.;Park, Beom-Kyeong;Song, Rak-Hyun;Lee, Seung-Bok;Lim, Tak-Hyoung;Park, Seok-Joo;Lee, Jong-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.344-349
    • /
    • 2015
  • An interconnect is the key component of solid oxide fuel cells that electrically connects unit cells and separates fuel from oxidant in the adjoining cells. To improve their surface stability in high-temperature oxidizing environments, metallic interconnects are usually coated with conductive oxides. In this study, lanthanum nickelates ($LaNiO_3$) with a perovskite structure are synthesized and applied as protective coatings on a metallic interconnect (Crofer 22 APU). The partial substitution of Co, Cu, and Fe for Ni improves electrical conductivity as well as thermal expansion match with the Crofer interconnect. The protective perovskite layers are fabricated on the interconnects by a slurry coating process combined with optimized heat-treatment. The perovskite-coated interconnects show area-specific resistances as low as $16.5-37.5m{\Omega}{\cdot}cm^2$ at $800^{\circ}C$.

Optimum Synthesis Condition of Acrylic Resins for High-Solid Coatings Containing Caprolactone Group (Caprolactone기 함유 하이솔리드 도료용 아크릴수지의 최적 합성조건)

  • Chung, Dong-Jin;You, Hyuk-Jae;Kim, Seong-Kil;Kim, Myung-Soo;Park, Hong-Soo;Kim, Tae-Ok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.197-203
    • /
    • 2004
  • Acrylic resins ($HSC_s$ : EA/EMA/2-HEMA/CLA) which contain 70% solid content were synthesized by the copolymerization of monomers (2-hydroxyethyl methacrylate, ethyl acrylate, and ethyl methacrylate) and functional monomer (caprolactone acrylate : CLA) which improves the crosslinking density and physical properties of films. The physical properties of the prepared acrylic resins (HSCs) containing CLA, are as follows : viscosity 245${\sim}$515 cps ; $M_n$ 2670${\sim}$2840 ; and conversions, 83${\sim}$91%, respectively. From the correlation of $T_g$ values, viscosities, and $M_n$ of the HSCs, it was found that viscosity and $M_n$ increased with $T_g$ value.

Analysis and Mechanical Behavior of Coating Layer in Metallic Glass Matrix Composite (비정질 기지 복합재 코팅층의 미세조직 분석 및 기계적 거동)

  • Jang, Beom Taek;Yi, Seong Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.6
    • /
    • pp.629-636
    • /
    • 2014
  • For surface modification, bulk metallic glass coatings were fabricated using metallic glass powder and a mixture of a self-fluxing alloy or/and hard metal alloys with a heat-resisting property using a high velocity oxy-fuel coating thermal spraying process. Microstructural analyses and mechanical tests were carried out using X-ray diffraction, a scanning electron microscope, an atomic force microscope, a three-dimensional optical profiler, and nanoindenation. As a result, the monolithic metallic glass coating was found to consist of solid particle and lamellae regions that included many pores. Second phase-reinforced composite coatings with a self-fluxing alloy or/and hard metal alloy additives were employed with in-situ $Cr_2Ni_3$ precipitate or/and ex-situ WC particles in an amorphous matrix. The mechanical behaviors of the solid particles and lamella regions showed large hardness and elastic modulus differences. The mechanical properties of the particle regions in the metallic glass composite coatings were superior to those of the lamellae regions in the monolithic metallic glass coatings, but indicated similar trends in matrix region of all the coating layers.

The properties and wear behavior of HVOF spray coating layer of Co-alloy powder

  • Cho, Tong-Yul;Yoon, Jae-Hong;Kim, Kil-Su;Youn, Suk-Jo;Back, Nam-Ki;Chun, Hui-Gon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.6
    • /
    • pp.273-277
    • /
    • 2006
  • High velocity of oxy-fuel (HVOF) thermal spray coating is progressively replacing the other classical hard coatings such as chrome plating and ceramic coating by the classical methods, since the very toxic $Cr^{6+}$ ion is well known as carcinogen causing lung cancer, and the ceramic coatings are brittle. Co-alloy T800 powder is coated on the Inconel 718 substrates by the HVOF coating procesess developed by this laboratory. For the study of the possibility of replacing of chrome plating, the wear properties of HVOF Co-alloy T800 coatings are investigated using the reciprocating sliding tester with a counter sliding SUS 304 ball both at room and at an elevated temperature of $1000^{\circ}F\;(538^{\circ}C)$. The possibility as durability improvement coating is studied for the application to the high speed spindles vulnerable to frictional heat and wear. Wear mechanisms at the reciprocating sliding wear test are studied far the application to the systems similar to the sliding test such as high speed spindles. Wear debris and frictional coefficients of T800 coatings both at room and at an elevated temperature of $538^{\circ}C$ are drastically reduced compared to those of non-coated surface of Inconel 718 substrates. Wear traces and friction coefficients of both coated and non-coated surfaces are drastically reduced at a high temperature of $538^{\circ}C$ compared with those at room temperature. These show that the coating is highly recommendable far the durability Improvement coating on the surfaces vulnerable to frictional heat and wear.

Evaluation of High Temperature Particle Erosion Resistance of Vanadium-Boride Coating (Vanadium-Boride코팅의 고온 내입자침식성 평가)

  • Lee, E.Y.;Kim, J.H.;Jeong, S.I.;Lee, S.H.;Eum, G.W.
    • Corrosion Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.76-84
    • /
    • 2015
  • The components in ultra super critical (USC) steam turbine, which is under development for high efficient power generation, are encountering harsher solid particle erosion by iron oxide scales than ones in the existing steam turbines. Therefore, the currently used boride coating will not be able to hold effective protection from particle erosion in USC system and should be replaced by new particle erosion resistant coatings. One of the best protective coatings developed for USC steam turbine parts was found to be vanadium-boride (V-boride) coating which has a hardness of about 3000 HV, much higher than that of boride, 1600~2000 HV. In order to evaluate particle erosion resistance of the various coatings such as V-boride, boride and Cr-carbide coatings at high temperature, particle erosion test equipments were designed and manufactured. In addition, erosion particle velocity was simulated using FLUENT software based on semi-implicity method for pressure linked equations revised (SIMPLER). Based on experimental results of this work, the vanadium-boride coating was found to be superior to others and to be a candidate coating to replace the boride coating.

Preparation and Physical Properties of High-Solids Acrylic/Urea Coatings (하이솔리드 아크릴/우레아 도료의 제조와 도막물성 연구)

  • Jung, Choong-Ho;Kim, Sung-Rae;Park, Hyong-Jin;Kim, Myung-Soo;Park, Hong-Soo;Park, Shin-Ja
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.311-319
    • /
    • 2002
  • Environmental friendly acrylic/urea high-solid paint(MUHC) were prepared through the curing reaction of acrylics resin(EBHC) containing 70wt% of solids content and butylated urea curing agent. The synthesis of EBHC Was done at $150^{\circ}C$ for 6 hours, and the results were obtained as follows : $M_{n}=1830{\sim}2190$, $M_{w}$ $3290{\sim}4000$, $M_{w}/M_{n}$=1.80{\sim}1.83$ viscosity=$110{\sim}352$ cps, and conversion=$82{\sim}92$%. After the film was coated with MUHC, the various physical properties were measured. They showed that enhancement of the coating properties such as adhesion, flexibility, abrasion resistance, impact resistance, and water resistance could be expected through introdl1cing caprolactone acrylate component in acrylics resin for the high-solids content acrylics/urea coatings.

Kinetic Analysis of Diffusion Aluminide Coating (확산 알루미나이드 코팅의 속도론적 해석)

  • 손희식;김문일
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.3
    • /
    • pp.152-163
    • /
    • 1995
  • A theoretical model which combines gaseous transport and solid state diffusion with the multi-component equilibrium at the gas/pack and gas/coating interfaces was used to study the kinetics of diffusion aluminide coating. The diffusion aluminide coatings were applied by pack cementation with Ni substrate under argon atmosphere in the high activity and the low activity pack containing $NH_4CL$ or $AlF_3$ activator. On the basis of the process conditions, the suggested model allows the surface composition, the growth rate of coating layers and the aluminium concentration profiles in coatings to be calculated. In the case of $NH_4$Cl activator, careful consideration was required in the analysis, because activator contains nitrogen and hydrogen as well as halogen element to activate the pack. A good agreement is obtained between the theoretical predictions and the experimental results.

  • PDF

Computer simulation of aluminide coating by pack cementation (팩 세멘테이션에 의한 알루미나이드 코팅의 컴퓨터 시뮬레이션)

  • Kim, M.I.;Sohn, H.S.;Lee, I.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.1
    • /
    • pp.3-11
    • /
    • 1995
  • A theoretical model which combines gaseous transport and solid state diffusion was used to study aluminide coating process by pack cementation. The aluminide coatings were applied in the high activity pack containing $NH_4Cl$ activator with Ni substrate under argon atmosphere. On the basis of the process conditions, the suggested model allows the surface composition, the growth rate of coating layers and the aluminium concentration profiles in coatings to be calculated. In the case of $NH_4Cl$ activator, careful consideration was required in the analysis, because activator contains nitrogen and hydrogen as well as halogen element to activate the pack. A good agreement is obtained between the theoretical predictions and the experimental results.

  • PDF

Microstructural Evolution of Aluminum Nitride - Yttrium Aluminum Garnet Composite Coatings by Plasma Spraying from Different Feedstock Powders (Aluminum Nitride - Yttrium Aluminum Garnet 분말 특성과 플라즈마 용사 코팅층의 미세조직)

  • So, Woong-Sub;Baik, Kyeong-Ho
    • Korean Journal of Materials Research
    • /
    • v.21 no.2
    • /
    • pp.106-110
    • /
    • 2011
  • A high thermal conductive AlN composite coating is attractive in thermal management applications. In this study, AlN-YAG composite coatings were manufactured by atmospheric plasma spraying from two different powders: spray-dried and plasma-treated. The mixture of both AlN and YAG was first mechanically alloyed and then spray-dried to obtain an agglomerated powder. The spray-dried powder was primarily spherical in shape and composed of an agglomerate of primary particles. The decomposition of AlN was pronounced at elevated temperatures due to the porous nature of the spray-dried powder, and was completely eliminated in nitrogen environment. A highly spherical, dense AlN-YAG composite powder was synthesized by plasma alloying and spheroidization (PAS) in an inert gas environment. The AlN-YAG coatings consisted of irregular-shaped, crystalline AlN particles embedded in amorphous YAG phase, indicating solid deposition of AlN and liquid deposition of YAG. The PAS-processed powder produced a lower-porosity and higher-hardness AlN-YAG coating due to a greater degree of melting in the plasma jet, compared to that of the spray-dried powder. The amorphization of the YAG matrix was evidence of melting degree of feedstock powder in flight because a fully molten YAG droplet formed an amorphous phase during splat quenching.

Fabrication of the Functional Coatings of a Tubular Solid Oxide Fuel by Plasma Spray Processes. (플라즈마 용사법을 이용한 원통형 고체산화물 연료전지의 요소피막 제조)

  • 주원태;홍상희
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.5
    • /
    • pp.333-346
    • /
    • 1997
  • Plasma spray processes for functional coatings of tubular SOFC ( Soild oxide Fuel Cell).consisting of air electrode, oxide electrolyte, an fuel electrode, are optimized by fully saturated fractional factorial testing. Material and electric characteristics of each coating are analtsed by the implementation of SEM and optical microscope for evaluating microstructure and porosity, X-ray diffraction method for investigating compositional change between raw powder and sprayed coating, and Van der Pauw method for measuring electrical conductivity. LSM ($La_{0.65}Sr_{0.35}MnO_3$air electrode and Ni-YSL fuel electrode coatings have porosities of around 23~30% sufficient for effective fuel and oxidant gas supply to electrochemical reaction interfaces and electrical conductivities of around 90 S/cm and 1000 S/cm, respectively, enough for acting as current collecting electrodes. YSZ($ZrO_2-8mol%Y_2O_3$) electrolyte film has a high ionic conductivities of 0.05~0.07 S/cm at $1000^{\circ}C$ in air atmosphere, but appears to be somewhat too porous to reduce the thickness. for enhancing the cell efficiency. A unit tubular SOFC has beem fabricated by the optimized plasma spray processes for each functional coating and the cell. Its electrochemical chracteristics are investigated by measuring voltage-current and power density with variation of operationg temperature, radio of fuel to air gas flowrates, and total gas flowrate of reactants.

  • PDF