• Title/Summary/Keyword: high-salinity wastewater

Search Result 35, Processing Time 0.028 seconds

Evaluation of the Effect of High Salinity RO Concentrate on the Microbial Acclimation/Cultivation Characteristics in Biological Wastewater Treatment Process (RO 농축수내 고농도 염분이 생물학적 폐수처리공정내 미생물 순응/배양에 미치는 영향평가)

  • Kim, Youn-Kwon;Kang, Suk-Hyung
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.5
    • /
    • pp.707-713
    • /
    • 2012
  • There are a lot of parameters affecting microbial acclimation/cultivation characteristics such as dynamic conditions, F/M ratio and substrate affinity. From the process control point of view, the effect of high salinity on the removal efficiencies of BOD and SS have been documented by few researchers. In this research, lab-scale CAS(Conventional Activated Sludge) process and modified $A_2O$(Anaerobic/Anoxic/Oxic) process were operated and monitored to evaluate the characteristics of microbial acclimation and cultivation under high salinity wastewater during the period of three weeks. As a result of acute microbial activity test(6hr) at various $Cl^-$ concentration, the appropriate $Cl^-$ concentration for microbial growth and acclimation ranged under 3,100 mg/l. As a result of acclimation/cultivation test, the trend of COD removal efficiency reduced gradually as time elapsed. It is considered that $NH_4$-N removal phenomenon of the conventional pollutants removal mechanisms gave little effect to the microbial acclimation/cultivation under high salinity wastewater.

Treatment of high-salinity wastewater after the resin regeneration using VMD

  • Gao, Junyu;Wang, Manxiang;Yun, Yanbin
    • Membrane and Water Treatment
    • /
    • v.9 no.1
    • /
    • pp.53-62
    • /
    • 2018
  • In this study, vacuum membrane distillation (VMD) was used to treat high-salinity wastewater (concentration about 17%) discharged by chlor-alkali plant after resin regeneration. The feasibility of VMD for the treatment of real saline wastewater by using Polyvinylidene fluoride (PVDF) microporous plate membrane with a pore diameter of $0.2{\mu}m$ was investigated. The effects of critical operating parameters such as feed temperature, velocity, vacuum degree and concentration on the permeate water flux were analyzed. Numerical simulation was used to predict the flux and the obtained results were in good agreement with the experimental data. The results showed that an increase in the operating conditions could greatly promote the permeate water flux which in turn decreased with an increase in the concentration. When the concentration varied from 17 to 25%, the permeate water flux dropped marginally with time indicating that the concentration was not sensitive to the decrease in permeate water flux. The permeate water flux decreased sharply until zero due to the membrane fouling resistance as the concentration varied from 25 to 26%. However, the conductivity of the produced water was well maintained and the average value was measured to be $4.98{\mu}s/cm$. Furthermore, a salt rejection of more than 99.99% was achieved. Overall, the outcome of this investigation clearly indicates that VMD has the potential for treating high-salinity wastewater.

Assessing Metallic Toxicity of Wastewater for Irrigation in Some Industrial Areas of Bangladesh

  • Rahman, Md. Mokhlesur;Jiku, Md. Abu Sayem;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.2
    • /
    • pp.189-195
    • /
    • 2011
  • BACKGROUND: Wastewaters were collected from 25 sites of two industrial areas of Mymensingh and Gazipur in Bangladesh to assess metallic toxicity of wastewater for irrigation usage. METHODS AND RESULTS: The analyzed wastewaters were slightly alkaline to alkaline in nature and were problematic for irrigation except 3 samples. As per TDS values, 9 samples were rated as fresh water and the rest 16 were classified as brackish water. EC and SAR reflected that all samples were medium salinity (C2), high salinity (C3), very high salinity (C4) and low alkalinity (S1) hazard classes expressed as C2S1, C3S1 and C4S1. Wastewaters of different industries were graded as excellent, good, permissible and doubtful for irrigation purpose as per SSP. According to hardness ($H_T$), wastewater were under moderately hard, hard and very hard classes. Cd, Cr and Cu ions were treated as toxicant for irrigating soils and crops. Zn was problematic for long-term irrigation. The concentrations of Pb, Fe and Na were far below the toxic levels. Synergistic relationships were observed between pH-EC, pH-TDS, EC-TDS, SAR-SSP and SSP-hardness. CONCLUSION(s): If wastewater is applied for irrigation due to the fresh water shortage, it can contaminate soil due to some toxic metal ions.

Effects on Microbial Activity of Aerobic Granular Sludge (AGS) in High-Salinity Wastewater (고농도 염분함유 폐수가 호기성 그래뉼 슬러지의 미생물 활성도에 미치는 영향)

  • Kim, Hyun-Gu;Ahn, Dae-Hee
    • Journal of Environmental Science International
    • /
    • v.28 no.7
    • /
    • pp.629-637
    • /
    • 2019
  • The purpose of this study was to evaluate the effect of high-salinity wastewater on the microbial activity of Aerobic Granule Sludge (AGS). Laboratory-scale experiments were performed using a sequencing batch reactor, and the Chemical Oxygen Demand (COD), nitrogen removal efficiency, sludge precipitability, and microbial activity were evaluated under various salinity injection. The COD removal efficiency was found to decrease gradually to 3.0% salinity injection, and it tended to recover slightly from 4.0%. The specific nitrification rate was 0.043 - 0.139 mg $NH_4{^+}-N/mg$ $MLVSS{\cdot}day$. The specific denitrification rate was 0.069 - 0.108 mg $NO_3{^-}-N/mg$ $MLVSS{\cdot}day$. The sludge volume index ($SVI_{30}$) ultimately decreased to 46 mL/g. The specific oxygen uptake rate decreased from an initial value 120.3 to a final value 70.7 mg $O_2/g$ $MLVSS{\cdot}hr$. Therefore, salinity injection affects the activity of AGS, causing degradation of the COD and nitrogen removal efficiency. It can be used as an indicator to objectively determine the effect of salinity on microbial activity.

Study on the Biological Denitrification Reaction of High-Salinity Wastewater using an Aerobic Granular Sludge (AGS) (호기성 그래뉼 슬러지를 이용한 고농도 염분 함유 폐수의 생물학적 탈질 반응에 관한 연구)

  • Kim, Hyun-Gu;Ahn, Dae-Hee
    • Journal of Environmental Science International
    • /
    • v.28 no.7
    • /
    • pp.607-615
    • /
    • 2019
  • The purpose of this study is to biological treatment of high salinity wastewater using Aerobic Granular Sludge (AGS). In laboratory scale's experiments research was performed using a sequencing batch reactor, and evaluation of the denitrification reaction in accordance with the injection condition of salinity concentration, surface properties of microorganisms, and sludge precipitability was performed. The results showed that the salinity concentration increased up to 1.5%, and there was no significant difference in the nitrogen removal efficiency; however, it showed a tendency to decrease gradually from 2.0% onward. The specific denitrification rate (SDNR) was 0.052 - 0.134 mg $NO_3{^-}-N/mg$ MLVSS (mixed liquor volatile suspended solid)${\cdot}day$. The MLVSS/MLSS (mixed liquor suspended solid) ratio decreased to 76.2%, and sludge volume index ($SVI_{30}$) was finally lowered to 57 mL/g. Using an optical microscope, it was also observed that the initial size of the sludge was 0.2 mm, and finally it was formed to 0.8-1.0 mm. Therefore, salinity injection provides favorable conditions for the formation of an AGS, and it was possible to maintain stable granular sludge during long-term operation of the biological treatment system.

Performance Analysis of Plate-and-Frame Forward Osmosis Membrane Module for Concentrating High Salinity Wastewater (고염도 폐수 농축을 위한 평판형 정삼투막 모듈의 성능 분석)

  • Kim, Yu Chang;Lee, Sungyun;Park, Sang-Jin;Kim, Han Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.6
    • /
    • pp.68-74
    • /
    • 2016
  • Hydraulic fracturing of wells during oil and gas (O&G) exploration consumes large volumes of fresh water and generates larger volumes of contaminated wastewater with high salinity. It is critical to treat and reuse the O&G wastewater in a cost-effective and environmentally sound manner for sustainable industrial development and for meeting stringent regulations. Recently, forward osmosis (FO) has been examined if it is a promising solution for treatment and desalination of complex industrial streams and especially fracturing flowback and produced waters. In the present study, the performances of a plate-and-frame FO membrane element and a module (6 elements combined in series) were investigated for concentrating high TDS wastewater. An FO module has achieved up to 64 % water recovery (i.e., concentration factor of 2.76) from 10,000 ppm wastewaters and can concentrate feed streams salinities to greater than 30,500 ppm.

Adsorption process efficiency of activated carbon from date pits in removing pollutants from dye wastewater

  • A. Ahsan;I.K. Erabee;F.B. Nazrul;M. Imteaz;M.M. El-Sergany;S. Shams;Md. Shafiquzzaman
    • Membrane and Water Treatment
    • /
    • v.14 no.4
    • /
    • pp.163-173
    • /
    • 2023
  • The presence of high amounts of organic and inorganic contaminants in textile wastewater is a major environmental concern. Therefore, the treatment of textile wastewater is an urgent issue to save the aquatic environment. The disposal of large quantities of untreated textile wastewater into inland water bodies can cause serious water pollution. In this study, synthetic dye wastewater samples were prepared using orange dye in the laboratory. The synthetic samples were then treated by a batch adsorption process using the prepared activated carbon (AC) from date pits. The wastewater parameters studied were the pH, total dissolved solids (TDS), total suspended solids (TSS), electrical conductivity (EC) and salinity. The activated adsorption process showed that the maximum removal efficiencies of electric conductivity (EC), salinity, TDS and TSS were 65%, 92%, 89% and 90%, respectively. The removal efficiencies were proportional to the increase in contact time (30-120 min) and AC adsorbent dose (1, 3 and 5 g/L). The adsorption profile indicates that 5 g/L of adsorbent delivers better results for TDS, EC, TSS and salinity at contact time of 120 min. The adsorption characteristics are better suited to the pseudo-second-order kinetic model than to the pseudo-first-order kinetic model. The Langmuir and Freundlich isotherms were well suited for describing the adsorption or contact behavior of EC and TSS within the studied system.

Future green seawater desalination technologies (미래 그린 해수담수화 기술)

  • Kim, Jungbin;Hong, Seungkwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.6
    • /
    • pp.403-410
    • /
    • 2020
  • The difficulty of securing freshwater sources is increasing with global climate change. On the other hand, seawater is less affected by climate change and regarded as a stable water source. For utilizing seawater as freshwater, seawater desalination technologies should be employed to reduce the concentration of salts. However, current desalination technologies might accelerate climate change and create problems for the ecosystem. The desalination technologies consume higher energy than conventional water treatment technologies, increase carbon footprint with high electricity use, and discharge high salinity of concentrate to the ocean. Thus, it is critical to developing green desalination technologies for sustainable desalination in the era of climate change. The energy consumption of desalination can be lowered by minimizing pump irreversibility, reducing feed salinity, and harvesting osmotic energy. Also, the carbon footprint can be reduced by employing renewable energy sources to the desalination system. Furthermore, the volume of concentrate discharge can be minimized by recovering valuable minerals from high-salinity concentrate. The future green seawater desalination can be achieved by the advancement of desalination technologies, the employment of renewable energy, and the utilization of concentrate.

Evaluation of Toxicity Influenced by Ion Imbalance in Wastewater (폐수에서 이온불균형문제가 생태독성에 미치는 영향 평가)

  • Shin, Kisik;Kim, Jongmin;Lee, Soohyung;Lee, Jungseo;Lee, Taekjune
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.1
    • /
    • pp.77-83
    • /
    • 2018
  • This paper aims to evaluate the results of toxicity testing with Daphnia magna and Vibrio fischeri on wastewater samples which might be influenced by ion imbalance. The effluents from factories were found to be more toxic with high salinity levels than those from public wastewater treatment plant (WTP) and sewage treatment plant (SWP). Clion composition was highest in the effluent, in terms of percentage, which was followed by $Na^+$, $SO_4^{2-}$ and $Ca^{2+}$. $K^+$ and $Mg^{2+}$ ion was relatively low. The sensitivity of D. magna test results was higher than V. fischeri. Among samples which were proved by V. fischeri testing to be nontoxic, the composition ratio of each ion whether toxic samples or nontoxic samples which were decided by D. magna toxicity testing, were compared. $Na^+$, $K^+$, $Ca^{2+}$, $Mg^{2+}$ ion composition ratio showed high level in nontoxic samples whereas $SO_4^{2-}$ and $Cl^-$ ion composition ratio was high in toxic samples. Accordingly, $SO_4^{2-}$ and $Cl^-$ ion seemed to be considered the ions causing toxicity in effluent. Toxicity from some categories of industries (Mining of non-metallic minerals, Manufacture of basic organic petrochemicals, Manufacture of other basic organic chemicals, Manufacture of other chemical products etc.) seemed to be influenced by salinity. The Ion concentration in influent and effluent were similar. Concentration of $Na^+$, $Cl^-$, $K^+$, $Ca^{2+}$ ions were high in influent, however $Mg^{2+}$ and $SO_4^{2-}$ ions were high in effluent.

Electrooxidation of tannery wastewater with continuous flow system: Role of electrode materials

  • Tien, Tran Tan;Luu, Tran Le
    • Environmental Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.324-334
    • /
    • 2020
  • Tannery wastewater is known to contain high concentrations of organic compounds, pathogens, and other toxic inorganic elements such as heavy metals, nitrogen, sulfur, etc. Biological methods such as aerobic and anaerobic processes are unsuitable for tannery wastewater treatment due to its high salinity, and electrochemical oxidation offers a promising method to solve this problem. In this study, raw tannery wastewater treatment using DSA® Ti/RuO2, Ti/IrO2 and Ti/BDD electrodes with continuous flow systems was examined. Effects of current densities and electrolysis times were investigated, to evaluate the process performance and energy consumption. The results showed that a Ti/BDD electrode is able to reach higher treatment efficiency than Ti/IrO2, and Ti/RuO2 electrodes across all parameters, excluding Total Nitrogen. The main mechanism of tannery wastewater oxidation at a Ti/BDD electrode is based on direct oxidation on the electrode surface combined with the generation of oxidants such as °OH and Cl2, while at DSA® Ti/RuO2 and Ti/IrO2 electrodes, the oxidation mechanisms are based on the generation of chlorine. After treatment, the effluents can be discharged to the environment after 6-12 h of electrolysis. Electrooxidation thus offers a promising method for removing the nutrients and non-biodegradable organic compounds in tannery wastewater.