• Title/Summary/Keyword: high-resolution imagery

Search Result 460, Processing Time 0.025 seconds

A Fast Algorithm for Target Detection in High Spatial Resolution Imagery

  • Kim Kwang-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.1
    • /
    • pp.41-47
    • /
    • 2006
  • Detection and identification of targets from remotely sensed imagery are of great interest for civilian and military application. This paper presents an algorithm for target detection in high spatial resolution imagery based on the spectral and the dimensional characteristics of the reference target. In this algorithm, the spectral and the dimensional information of the reference target is extracted automatically from the sample image of the reference target. Then in the entire image, the candidate target pixels are extracted based on the spectral characteristics of the reference target. Finally, groups of candidate pixels which form isolated spatial objects of similar size to that of the reference target are extracted as detected targets. The experimental test results showed that even though the algorithm detected spatial objects which has different shape as targets if the spectral and the dimensional characteristics are similar to that of the reference target, it could detect 97.5% of the targets in the image. Using hyperspectral image and utilizing the shape information are expected to increase the performance of the proposed algorithm.

Object Detection from High Resolution Satellite Image by Using Genetic Algorithms

  • Kim Kwang-Eun
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.120-122
    • /
    • 2005
  • With the commercial availability of very high resolution satellite imagery, the concealment of national confidential targets such as military facilities became one of the most bothering task to the image distributors. This task has been carried out by handwork masking of the target objects. Therefore, the quality of the concealment was fully depends on the ability and skill of a worker. In this study, a spectral clustering based technique for the seamless concealment of confidential targets in high resolution imagery was developed. The applicability test shows that the proposed technique can be used as a practical procedure for those who need to hide some information in image before public distribution

  • PDF

Analysis of Texture Information with High Resolution Imagery for Characterizing Forest Stand

  • KIM T. G.;LEE K. S.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.14-16
    • /
    • 2004
  • Although there have been wide range of studies to characterize forest stands based upon spectral information of satellite image, it was not fully understood the texture information of forest stand using high resolution data. The objective of this study is to evaluate several texture measures for characterizing forest stand structure, such as species composition, diameter at breast height(DBH), stand density, and age. High resolution IKONOS satellite imagery data were acquired in August 200 lover the forested area near Ulsan, Korea. Primary forest types were plantation pine, mixed forest, and natural deciduous forest of stand age ranging from 10 to 50 years old. Several GLCM-based texture measures were compared with forest stand characteristics. In overall, a texture measure (contrast) calculated using red band were better to differentiate species and age group than other texture measures and near infrared bands.

  • PDF

IMAGE CLASSIFICATION OF HIGH RESOLTION MULTISPECTRAL IMAGERY VIA PANSHARPENING

  • Lee, Sang-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.18-21
    • /
    • 2008
  • Lee (2008) proposed the pansharpening method to reconstruct at the higher resolution the multispectral images which agree with the spectral values observed from the sensor of the lower resolution values. It outperformed over several current techniques for the statistical analysis with quantitative measures, and generated the imagery of good quality for visual interpretation. However, if a small object stretches over two adjacent pixels with different spectral characteristics at the lower resolution, the pixels of the object at the higher resolution may have different multispectral values according to their location even though they have a same intensity in the panchromatic image of higher resolution. To correct this problem, this study employed an iterative technique similar to the image restoration scheme of Point-Jacobian iterative MAP estimation. The effect of pansharpening on image segmentation/classification was assessed for various techniques. The method was applied to the IKONOS image acquired over the area around Anyang City of Korea.

  • PDF

Atmospheric Aerosol Detection And Its Removal for Satellite Data

  • Lee, Dong-Ha;Lee, Kwon-Ho;Kim, Young-Joan
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.379-383
    • /
    • 2006
  • Satellite imagery may contain large regions covered with atmospheric aerosol. A highresolution satellite imagery affected by non-homogenous aerosol cover should be processed for land cover study and perform the radiometric calibration that will allow its future application for Korea Multi-Purpose Satellite (KOMPSAT) data. In this study, aerosol signal was separated from high resolution satellite data based on the reflectance separation method. Since aerosol removal has a good sensitivity over bright surface such as man-made targets, aerosol optical thickness (AOT) retrieval algorithm could be used. AOT retrieval using Look-up table (LUT) approach for utilizing the transformed image to radiometrically compensate visible band imagery is processed and tested in the correction of satellite scenery. Moderate Resolution Imaging Spectroradiometer (MODIS), EO-l/HYPERION data have been used for aerosol correction and AOT retrieval with different spatial resolution. Results show that an application of the aerosol detection for HYPERION data yields successive aerosol separation from imagery and AOT maps are consistent with MODIS AOT map.

Evaluation of Block-based Sharpening Algorithms for Fusion of Hyperion and ALI Imagery (Hyperion과 ALI 영상의 융합을 위한 블록 기반의 융합기법 평가)

  • Kim, Yeji;Choi, Jaewan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.1
    • /
    • pp.63-70
    • /
    • 2015
  • An Image fusion, or Pansharpening is a methodology of increasing the spatial resolution of image with low-spatial resolution using high-spatial resolution images. In this paper, we have performed an image fusion of hyperspectral imagery by using panchromatic image with high-spatial resolution, multispectral and hyperspectral images with low-spatial resolution, which had been acquired by ALI and Hyperion of EO-1 satellite sensors. The study has been mainly focused on evaluating performance of fusion process following to the image fusion methodology of the block association, which had applied to ALI and Hyperion dataset by considering spectral characteristics between multispectral and hyperspectral images. The results from experiments have been identified that the proposed algorithm efficiently improved the spatial resolution and minimized spectral distortion comparing with results from a fusion of the only panchromatic and hyperspectral images and the existing block-based fusion method. Through the study in a proposed algorithm, we could concluded in that those applications of airborne hyperspectral sensors and various hyperspectral satellite sensors will be launched at future by enlarge its usages.

Extracting High Quality Thematic Information by Using High-Resolution Satellite Imagery (고해상도 위성영상을 이용한 정밀 주제 정보 추출)

  • Lee, Hyun-Jik;Ru, Ji-Ho;Yu, Young-Geol
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.1
    • /
    • pp.73-81
    • /
    • 2010
  • In recent years, there have been diverse researches and utilizations of creating geo-spatial information with high resolution satellite images. However thematic maps made with middle or low resolution satellite images have low location accuracy and precision of thematic information. This study set out to propose a method of making a precision thematic map with high resolution satellite images by examining the conversion from the conventional method based on middle or low resolution satellite images to the automatic method based on high resolution satellite images of GSD 1m or lower, extracting thematic information of middle or large scale of 1/5,000 or lower, and analyzing its accuracy. Seven classification classes were categorized according to the object-oriented classification in order to automatically extract thematic information with high resolution satellite images. And the classification results were compared and analyzed with the old middle scale land cover map and 1/1000 digital map.

Comparative Study of GDPA and Hough Transformation for Linear Feature Extraction using Space-borne Imagery (위성 영상정보를 이용한 선형 지형지물 추출에서의 GDPA와 Hough 변환 처리결과 비교연구)

  • Lee Kiwon;Ryu Hee-Young;Kwon Byung-Doo
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.4
    • /
    • pp.261-274
    • /
    • 2004
  • The feature extraction using remotely sensed imagery has been recognized one of the important tasks in remote sensing applications. As the high-resolution imagery are widely used to the engineering purposes, need of more accurate feature information also is increasing. Especially, in case of the automatic extraction of linear feature such as road using mid or low-resolution imagery, several techniques was developed and applied in the mean time. But quantitatively comparative analysis of techniques and case studies for high-resolution imagery is rare. In this study, we implemented a computer program to perform and compare GDPA (Gradient Direction Profile Analysis) algorithm and Hough transformation. Also the results of applying two techniques to some images were compared with road centerline layers and boundary layers of digital map and presented. For quantitative comparison, the ranking method using commission error and omission error was used. As results, Hough transform had high accuracy over 20% on the average. As for execution speed, GDPA shows main advantage over Hough transform. But the accuracy was not remarkable difference between GDPA and Hough transform, when the noise removal was app]ied to the result of GDPA. In conclusion, it is expected that GDPA have more advantage than Hough transform in the application side.

Support Vector Machine Classification Using Training Sets of Small Mixed Pixels: An Appropriateness Assessment of IKONOS Imagery

  • Yu, Byeong-Hyeok;Chi, Kwang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.5
    • /
    • pp.507-515
    • /
    • 2008
  • Many studies have generally used a large number of pure pixels as an approach to training set design. The training set are used, however, varies between classifiers. In the recent research, it was reported that small mixed pixels between classes are actually more useful than larger pure pixels of each class in Support Vector Machine (SVM) classification. We evaluated a usability of small mixed pixels as a training set for the classification of high-resolution satellite imagery. We presented an advanced approach to obtain a mixed pixel readily, and evaluated the appropriateness with the land cover classification from IKONOS satellite imagery. The results showed that the accuracy of the classification based on small mixed pixels is nearly identical to the accuracy of the classification based on large pure pixels. However, it also showed a limitation that small mixed pixels used may provide insufficient information to separate the classes. Small mixed pixels of the class border region provide cost-effective training sets, but its use with other pixels must be considered in use of high-resolution satellite imagery or relatively complex land cover situations.

Geometric Correction of the NOAA/AVHRR Imagery (NOAA/AVHRR 영상의 기하학적 보정)

  • 서명석;신경섭;박경윤
    • Korean Journal of Remote Sensing
    • /
    • v.6 no.1
    • /
    • pp.25-37
    • /
    • 1990
  • Methods of geometric correction for the Advanced Very High Resolution Radiometer imagery of NOAA satellites were developed and applied to the software for image processing of meteorological satellite data. The software for finding the earth location of each scan position and the software for gridding on original imagery were dedigned. On the assumption of circular orbits and the spherical earth, the methods developed were sufficiently accurate in the purpose of most meteorological data analyses.