• Title/Summary/Keyword: high-purity limestone

Search Result 14, Processing Time 0.027 seconds

Verification of Genetic Process for the High-purity Limestone in Daegi Formation by Oxygen-carbon Stable Isotope Characteristics (산소-탄소 안정동위원소특성을 이용한 대기층 고품위 석회석의 생성기작 해석)

  • Kim, Chang Seong;Choi, Seon-Gyu;Kim, Gyu-Bo;Kang, Jeonggeuk;Kim, Sang-Tae;Lee, Jonghyun;Jang, Jaeho
    • Economic and Environmental Geology
    • /
    • v.52 no.1
    • /
    • pp.107-118
    • /
    • 2019
  • Two assertions about the process the formation of the high-purity limestone in the Taebaeksan Basin, categorized into syngenetic and epigenetic origin, are verified on the basis of its oxygen-carbon stable isotopic characteristics. The carbonate rocks sampled from the selective six high-purity limestone mines and several outcrops in the Daegi formation are featured by various colors such as the gray, light gray and dark gray. They show a wide range of oxygen stable isotope ratios (4.5 ~ 21.6 ‰), but a narrow range of carbon stable isotope ratios (-1.1 ~ 0.8 ‰, except for vein calcite), which means that they had not experienced strong hydrothermal alteration. In addition, there is no difference in the range of the oxygen stable isotope ratios by mine and color, and it is similar to the range from surrounding outcrop samples. These results indicate that the effect of the hydrothermal alteration were negligible in the generation of high-purity limestone in deposit scale. Whereas, the carbonate rocks can be divided texturally into two groups on the basis of an oxygen isotope ratio; the massive-textured or well-layered samples (>15 ‰), and the layer-disturbed (or layer-destructed) and showing over two colors in one sample (<15 ‰). In the multi-colored samples, the bright parts are characterized by the very low oxygen stable isotope ratios, compared to the dark parts, implying the increase in brightness of the carbonate rocks could be induced by the interaction between hydrothermal fluid and rock. However, these can be applied in a small scale such as one sample and are not suitable for interpretation of the generation of high-purity limestone as a deposit scale. In particular, the high oxygen isotope ratios from the recrystallized white limestone suggest that hydrothermal fluids are also rarely involved during recrystallization process. In addition, the occurrences of the high-purity limestone orebody strongly support the high-purity limestone in the area are syngenetic rather than epigenetic; the high-purity limestone layers in the area show continuous and almost horizontal shapes, and is intercalated between dolomite layers. Consequently, the overall reinterpretation based on the sequential stratigraphy over the Taebaeksan basin would play an important role to find additional reserves of the high-purity limestone.

Calcination Characteristics of High-purity Limestone from the Pungchon Limestone in the Quicklime Manufacture (생석회 제조 공정에서의 풍촌층 고품위 석회석의 소성 특성)

  • Noh, Jin-Hwan;Lee, Hyun-Chul
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.209-224
    • /
    • 2008
  • Various types of high-purity limestone, which occurred in the Pungchon Formation, are examined to understand applied-mineralogical factors controlling their calcination characters with respect to the ore characters. To do this work, systematic characterization and determination were carried out for the limestone ores and their calcination products in a fixed heating condition, and the results were correlated and discussed. During the calcination experiment, a phase transition from calcite to quicklime begins to occur selectively in the physical weak zones such as grain boundary, cleavage and twin planes. All the fabrics of original limestones are preserved in the resultant quicklime. In addition, crystallinity of the quicklime was advanced, as the aging time of calcination was increased. Major controlling factors on the calcination effects of the high-purity limestone are elucidated to be the degree of development of cleavage and twin, together with crystallinity and textures in the limestone ore. Especially, lower crystallinity and dense interlocking fabrics obviously play advantageous role in all the calcination characters. But the development of cleavage and twin affects negatively on the calcination characters on account of favoring decrepitaion of quicklime in the lime manufacturing. Thus, the high-purity limestones characteristic of marble fabrics and relatively lower crystallinity are comparatively advantageous for the uses of lime manufacture.

Genetic Environments of the High-purity Limestone in the Upper Zone of the Daegi Formation at the Jeongseon-Samcheok Area (정선-삼척 일대 대기층 상부 고품위 석회석의 생성환경)

  • Kim, Chang Seong;Choi, Seon-Gyu;Kim, Gyu-Bo;Kang, Jeonggeuk;Kim, Kyeong Bae;Kim, Hagsoo;Lee, Jeongsang;Ryu, In-Chang
    • Economic and Environmental Geology
    • /
    • v.50 no.4
    • /
    • pp.287-302
    • /
    • 2017
  • The carbonate rocks of the Daegi Formation are composed of the limestone at the upper and lower zones, and the dolomite at the middle zone, in which the upper zone has higher CaO content than others. The colors of carbonate rock in the Daegi Formation can be divided into five types; white, light brown, light gray, gray, and dark gray. The white to light gray colored rocks correspond to the high purity limestone with 53.15 ~ 55.64 wt. % CaO, and the light brown colored rocks contain 20.71 ~ 21.67 wt. % MgO. The bleaching of carbonate rocks are not related to CaO composition of the rocks, as light gray rocks tend to be higher in CaO content than those of the white rocks at the lower zone. The pelitic components are also occasionally increased in white limestone than light grey one. $Al_2O_3$ is one of the most difficult content to remove during hydrothermal processes, so the interpretation that the limestone is purified together with hydrothemral bleaching, has little merit. The wide range (over 16 ‰) of ${\delta}^{18}O_{SMOW}$, smaller variation (within 2 ‰) of ${\delta}^{13}C_{PDB}$ are apparent in both the upper and lower zones, which indicate the Daegi Formation had been affected overall by hydrothermal fluids. The K-Ar isotopic age of hydrothermal alteration in the GMI limestone mine is $85.1{\pm}1.7Ma$. Gradual change from grey through light grey to white limestone is accompaned by lower oxygen stable isotope values, which is major evidence that the hydrothermal effect is the main process of the bleaching. Although the Daegi Formation has suffered from hydrothermal activity and increase in whiteness, there is no clear evidence demonstrating the relationship between bleaching and high purity of limestone. The purification of limestone has nothing to do with the hydrothermal activity in this area. Instead, it should be considered that the change of sedimentary environment related to see-level fluctuation which can prevent deposition of pelitic components especially $Al_2O_3$ contrbuted to the formation of the high purity limestone in the upper zone of the Daegi Formation. Considering the evidences such as increase in CaO content of limestone by depth, gradual change from calcite to dolomite at the lower zones, and occurring the high purity limestone at the upper zone, the interpretation of sequence stratigraphic aspect to the formation of the high purity Daegi limestone appears to be more suitable than that of hydrothermal alteration origin.

A Study on the Application Limestone Sludge to the Flue Gas Desulfurization Process (제철 산업부산물인 석회석 슬러지의 배연탈황 공정 적용에 관한 연구)

  • Seo, Sung Kwan;Chu, Yong Sik;Shim, Kwang Bo;Lee, Jong Kyu;Song, Hun;Yun, Young Min
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.6
    • /
    • pp.575-583
    • /
    • 2014
  • The flue gas desulfurization (FGD) process is currently the most effective process utilized to remove sulfur dioxide from stack gases of coal-fired plants. However, FGD systems use a lot of limestone as desulfurizing agent. In this study, we use limestone sludge, which is a by-product of the steel industry, to replace the desulfurizing agent of the FGD system. The limestone particle size is found to be unrelated to the desulfurizing rate; the gypsum purity, however, is related. Limestone sludge mixes with limestone slurry delivered at a constant rate in a desulfurizing agent with organic acid are expected to lead to a high desulfurization efficiency and high quality by-product (gypsum).

Quality Evaluation of the High-purity Limestones for Lime Manufacturing Based on the Measurements of Shape Factor and Grain Boundary Frequency (형상계수 및 경계빈도수 측정에 의거한 생석회 제조용 고품위석회석의 품질 평가)

  • Noh, Jin-Hwan;Lee, Hyun-Chul
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.371-383
    • /
    • 2009
  • Crystallinity and textural relations, which are crucial in terms of the quality concept of high-purity limestone, have not been effectively applicable to the limestone evaluation as crude ore due to the difficulties in precise measurements. To overcome the above, as a new method of ore characterization, a measurement of shape factor and grain boundary frequency utilizing the image analysing system was adopted in this study. Some domestic limestones used for lime manufacturing were investigated by such a quality evaluation method, and its results are discussed and correlated each other samples. As the result, even though calcite contents of crude ore, i.e., limestone grade and its crystal size are similar, quality of manufactured lime is remarkably different depending on the degree of shape factor and grain boundary frequency. In other words, as the more irregular in crystal shape and the higher the grain boundary frequency, the manufactured quick lime became more superior in all terms of lime quality such as rate of calcination, porosity, reactivity, sintering and decrepitation effect. However, because the quick lime become easily overheated in case of relatively higher degree in shape factor and grain boundary effect, a technology minimizing heating time is necessary for the manufacturing of high quality lime. In limestone industry, such a ore characterization method will be much more reasonable than the conventional method by measurement of mean size, because the method may collectively comprise crystal shape and other textural factors which can not be numerically evaluated in the past.

Manufacturing properties of γ-dicalcium silicate with synthetic method

  • Chen, Zheng-xin;Lee, Han-seung;Cho, Hyeong-Kyu
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.spc1
    • /
    • pp.109-112
    • /
    • 2019
  • γ-dicalcium silicate(γ-C2S) is known as a polymorphism of belite. Due to its high CO2 fixed capacity and the low CO2 emission production process, γ-C2S has attracted more and more attention of researchers. For the further development of application of γ-C2S in building construction industry. In this study, we aim to investigate the method for synthesizing high purity of γ-C2S. The influence of different raw materials and calcination temperatures on the purity of γ-C2S was also evaluated. Several Ca bearing materials were selected as the calcium source, the materials which' s main component is SiO2 were used as the silicon source. Raw materials were mixed and were calcined under different temperatures. The results reveal that the highest purity could be obtained using Ca(OH)2 and SiO2 powder as raw materials. And for the practical application, a relatively economic synthesis method using natural mineral materials- limestone and silica sand as raw materials was developed, by this method, the purity of the synthetic γ-C2S was 77.6%.

Geologic Report on the Goobong Limestone Mine (구봉석회석광산의 지질조사보고(地質調査報告))

  • Lee, Dai Sung
    • Economic and Environmental Geology
    • /
    • v.3 no.1
    • /
    • pp.17-24
    • /
    • 1970
  • The purpose of this report is to prepare a data for the economic evaluation on the Goobong Limestone Mine which is located at the south-eastern corner of the Yongchun Quadrangle scaled in 1:50,000. The accessibility from the mine to railroad was considered in two ways. One is to Dodam Station on Central Railway Line and the other is to reach Songjung-ni village which is near Sangyong Station on Hamback Railway Line. The distance of the former way is 26.7km and the later is 24.2km. Geologically the mine is situated near the base of the Greast Limestone Series which strikes generally $N25^{\circ}{\sim}30^{\circ}E$. The series comprises six different formations from older to younger; Pungchon Limestone Formation and Whajol Formation of Cambrian age, and Dongjum Quartzite Formation, Dumudong Formation, Maggol Limestone Formation and Goseong Formation of lower to middle Ordovician age. 82 samples; 48 from Pungchon Limestone Formation, 11 from Dumudong Formation, 15 from Maggol Limestone Formation and 8 from Goseong Formation, were taken from the series in the crossed direction to the general trend of the series as shown in geological map. They were chemically analyzed on the components of CaO, MgO, $SiO_2$, $R_2O_3(Al_2O_3+Fe_2O_3)$ and ignition loss as shown in table 2, table 3, table 4, and table 5. As seen from the tables, among the formations of the series, middle to upper parts of the Pungchon Limestone Formation and middle and upper parts of the Dumudong Formation have chemical composition as available source for the raw material of cement industry, not only that but also the part of the Pungchon Formation was highly evaluated as source for the flux of iron smelting and the raw material of carbide manufacturing because of its high purity of calcium carbonate.

  • PDF

Modeling of Wet Flue Gas Desulfurization Process for Utilization of Low-Grade Limestone (저품위 석회석 활용을 위한 습식 배연탈황 공정 모델링 연구)

  • Lim, Jonghun;Choi, Yeongryeol;Kim, Geonyeol;Song, Hojun;Kim, Junghwan
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.743-748
    • /
    • 2019
  • This study focuses on the simulation of wet flue gas desulfurization process for improving the production of gypsum by the utilization of low-grade limestone. At present, high-grade limestone with a $CaCO_3$ content of 94% is used for producing merchantable gypsum. In modeling process, a lot of reactions are considered to develop model. First, the limestone dissolution is simulated by RSTOIC model. Second, SOx absorption and crystallization is used by RCSTR model. Finally the gypsum is separated by using SEPERATORS model. Modeling steps make it easy to reflect further side reactions and physical disturbances. In optimization condition, constraints are set to 93% purity of gypsum, 94% desulfurization efficiency, and total use of limestone at 3710 kg/hr. Under these constraints, the mass flow of low-grade limestone was maximized. As a result, the maximum blending quantity of low-grade limestone for 2,100 kg of high-grade limestone that satisfies constraints is about 1,610 kg.

Characterization and assessment of the dolomite powder for application as fillers in the marble-type ore (대리암형 백운석의 분체 특성과 충전재로서의 응용성 평가)

  • Noh, Jin-Hwan;Lee, Na-Kyoung
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.2 s.52
    • /
    • pp.71-81
    • /
    • 2007
  • The marble-type dolomite from the Jasung Mine, which was farmed by duplicated affects of contact metamorphism and subsequent hydrothermal alteration, corresponds to a high-purity dolomite ranging up to above 98wt.% in dolomite contents. The dolomite contain minor impurities such as quartz, muscovite, and pyrite. It is characteristic that the dolomite is fairy Fe-rich corresponding to 0.4 wt.% due to the presence of pyrite of possible hydrothermal origin. The dolomite is nearly white-colored and constituting with subhedral crystals ranging $0.35{\sim}0.46mm$M in size, forming equigranular texture. Compared to the typical high-Ca limestone from the Pungchon Formation, the powder characteristics of dolomite is rather superior in milling efficiency, yields of fine particles, and size distribution. In addition, except for iron contents, the dolomite powder is no less superior than the limestone in quality and characteristics as fillers with respects to not only whiteness, oil absorption, and specific surface area but also shape characters such as elongation ratio, aspect ratio, and sphericity. This good characteristics of dolomite powder seem to be originated basically from comparatively higher grade and crystallinity of dolomite. Higher iron contents and the presence of sulfides prevents the dolomite from application for uses by thermal treatment, except for metallic manufacture. However, if proper ore separation procedure is available, the dolomite can be sufficiently utilized as substitutes for high-Ca limestone in most fields of filler industries.

콘크리트 재생 골재를 이용한 산성광산배수 중화처리

  • 김종범;오재일;정시열
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.71-74
    • /
    • 2001
  • AMB(Acid Mine Drainage), characterized as high concentration of metal & sulfate ions and low pH(2.0~4.0), is the world-wide problem wherever there is or has been mining activities. Though limestone has been generally used to neutralize AMD, There are metal hydroxide precipitation on the surface of limestone and excessive alkalinity formation which exceeds the regulation. In this research, concrete-recycled fine aggregate is selected for alternative neutralizing agent. Because fine recycled aggregate had more ANP than others in the preliminary research, the purpose of this research is to apply fine aggregate for AMD neutralization. Three columns packed with fine aggregates(2.5mm$O_3$) of it is calculated as 0.09(C-1), approximated 10% purity of limestone. Comparing with values of other columns(C-2: 0.01 and C-3: 0.01), there is variation of porosity and residence time induced from the precipitation of metal hydroxide. Consequently, 8 hours of HRT is enough to create adequate alkalinity and the function which could expect the variation of porosity(n) and residence time( $t_{R}$) should be applied to develop design function.lied to develop design function.

  • PDF