• Title/Summary/Keyword: high-purity

Search Result 1,288, Processing Time 0.028 seconds

Silicon Carbide Coating on Graphite and Isotropic C/C Composite by Chemical Vapour Reaction

  • Manocha, L.M.;Patel, Bharat;Manocha, S.
    • Carbon letters
    • /
    • v.8 no.2
    • /
    • pp.91-94
    • /
    • 2007
  • The application of Carbon and graphite based materials in unprotected environment is limited to a temperature of $450^{\circ}C$ or so because of their susceptibility to oxidation at this temperature and higher. To over come these obstacles a low cost chemical vapour reaction process (CVR) was developed to give crystalline and high purity SiC coating on graphite and isotropic C/C composite. CVR is most effective carbothermal reduction method for conversation of a few micron of carbon layer to SiC. In the CVR method, a sic conversation layer is formed by reaction between carbon and gaseous reagent silicon monoxide at high temperature. Characterization of SiC coating was carried out using SEM. The other properties studied were hardness density and conversion efficiency.

Fabrication of AlN Powder by Self-propagating High-temperature Synthesis I. Synthesis of AlN Powder (자전고온 반응 합성법에 의한 AlN 분말의 제조 I.AlN 분말의 제조)

  • 신재선;안도환;김석윤;김용석
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.9
    • /
    • pp.961-968
    • /
    • 1996
  • The aluminum nitride was synthesized by the self-propagating high-temperature synthesis(SHS). The synthe-sis was used aluminum powder mixed with AlN powder as reactant and the control factors affected to synthesis were considered compact density pressure of reaction gas AlN diluent content and aluminum powder size. The SHS reaction conducted with a reactant containing 50% AlN diluent under 0.8MPa nitrogen gas pressure yielded a complete conversion of aluminum powder to AlN powders. The size and purity of AlN produced were found to be comparable with that of AlN produced by the carbothermal nitrogen method.

  • PDF

Synthesis and Characterization of Novel Blue Materials based on Anthracene Derivatives for High Efficient OLED

  • Zhao, QingHua;Jung, Sung-Ouk;Kang, Dong-Min;Kim, Yun-Hi;Kwon, Soon-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.439-442
    • /
    • 2007
  • Novel blue materials based on anthracene derivatives were synthesized by Grignard reaction, the Suziki coupling reaction, etc. They showed excellent thermal stability and emitted bright blue light, which will been used for OLED and expected to obtain high efficiency and good color purity.

  • PDF

Synethisis of fine BSCCO precursor powder by spray pyrolysis (분무 열분해에 의한 미세 BSCCO 전구체 분말의 합성)

  • 김성환;유재무;고재웅;김영국;박성창
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.99-102
    • /
    • 2003
  • Many researches on synthesis process for BSCCO precursor powders have been developed for high J$_{c}$ BSCCO-2223/Ag tape. Spray pyrolysis method for fabrication of precursor powder has many advantages, such as high purity, fine particle size of BSCCO precursor powder. Fine, spherical powders were prepared by ultrasonic spray pyrolysis from the aqueous solution of metal nitrates. BSCCO precursor powders were synthesized with 0.1 M concentration and heat treatment conditions. Average particle size for spray pyrolysis powders was 1.5 ~ 3 ${\mu}{\textrm}{m}$. BSCCO -2223/Ag tape was prepared by PIT method and followed by various sintering conditions. The critical current density of BSCCO-2223/Ag tape sintered in low oxygen partial pressure was ~ 23 kAcm$^{-2}$.

  • PDF

Selective Reduction of Organic Compounds with Al-Methanesulfonyldiisobutylalane

  • Cha, Jin-Soon;Noh, Min-Yeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.840-844
    • /
    • 2010
  • The new MPV type reagent, Al-methanesulfonyldiisobutylalane ($DIBAO_3SCH_3$), has been prepared and its reducing characteristics in the reduction of selected organic compounds containing representative functional groups have been examined in order to find out a new reducing system with high selectivity in organic synthesis. In general, the reagent is extremely mild, showing only reactivity toward aldehydes, ketones and epoxides. The reagent exhibits a unique reducing applicability in organic synthesis. Thus, the reagent can achieve a clean 1,2-reduction of $\alpha,\beta$-unsaturated aldehydes and ketones to produce the corresponding allylic alcohols in 100% purity. In addition, the reagent shows an excellent regioselectivity in the ring-opening reaction of epoxides. Finally, $DIBAO_3SCH_3$ shows a high stereoselectivity in the reduction of cyclic ketones to produce the thermodynamically more stable epimers exclusively.

Influence of Operating Conditions on the Performance of a Oxy-fuel Combustion Reference Cycle (순산소 연소 기본 사이클의 작동조건 변화에 따른 성능해석)

  • Park, Byung-Chul;Sohn, Jeong-Lak;Kim, Tong-Seop;Ahn, Kook-Young;Kang, Shin-Hyoung
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2971-2976
    • /
    • 2008
  • Recently, there has been growing interest in the oxyfuel combustion cycle since it enables high-purity CO2 capture with high efficiency. However, the oxyfuel combustion cycle has some important issues regarding to its performance such as the requirement of water recirculation to decrease a turbine inlet temperature and proper combustion pressure to enhance cycle efficiency. The purpose of the present study is to analyze performance characteristics of the oxyfuel combustion cycle with different turbine inlet temperatures and combustion pressures. It is expected that the turbine inlet temperature improves cycle efficiency, on the other hand, the combustion pressure has specific value to display highest cycle efficiency.

  • PDF

Effects of permeation test conditions on $CO_2$/$N_2$ separations of NaY zeolite membranes

  • Cho, Churl-hee;Ahn, Young-soo;Han, Moon-hee;Hyun, Sang-hoon
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.105-108
    • /
    • 2004
  • Since Kyoto protocol in 1997, carbon dioxide recovery using membranes has been attended due to its potential applications to recover high purity carbon dioxide with low processing cost. Because carbon dioxide membrane should operate in chemically and thermally severe conditions and requires high permeance, an inorganic membrane is more favorable than a polymeric membrane.(omitted)

  • PDF

Properties of Substrate-free GaN Grown on AIN/Si by HVPE (HVPE법으로 AIN/Si 기판 위에 성장한 Substrate-free GaN의 특성)

  • 이영주;김선태;정성훈;문동찬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.194-197
    • /
    • 1997
  • A hydride vapor phase epitaxy (HVPE) method was performed to prepare the thick-fi lm GaN on AIN/Si substrates. We obtained substrate-free GaN. The foul t-width at half maximum of double crystal X-ray rocking curve from 350 ${\mu}{\textrm}{m}$ thick substrate-free GaN was ~1000 arcsec. The photoluminescence spectrum (at 20 K) shows the narrow bound exiton (I$_2$) line and wealth donor-acceptor pair recombination however. there was not observed deep donor-accepter pair recombination indicate the substrate-free GaN crystal prepared in this study are of high purity and high crystalline quality.

  • PDF

Switch-on Phenomena and Field Emission from Multi-Walled Carbon Nanotubes Embedded in Glass

  • Bani Ali, Emad S;Mousa, Marwan S
    • Applied Microscopy
    • /
    • v.46 no.4
    • /
    • pp.244-252
    • /
    • 2016
  • This paper describes a new design of carbon nanotube tip. $Nanocly^{TM}$ NC 7000 Thin Multiwall Carbon Nanotubes of carbon purity (90%) and average diameter tube 9.5 nm with a high aspect-ratio (>150) were used. These tips were manufactured by employing a drawing technique using a glass puller. The glass microemitters with internal carbon nanotubes show a switch-on effect to a high current level (1 to $20{\mu}A$). A field electron microscope with a tip (cathode)-screen (anode) separation at ~10 mm was used to characterize the electron emitters. The system was evacuated down to a base pressure of ${\sim}10^{-9}$ mbar when baked at up to ${\sim}200^{\circ}C$ overnight. This allowed measurements of typical Field Electron Emission characteristics; namely the current-voltage (I-V) characteristics and the emission images on a conductive phosphorus screen (the anode). Fowler-Nordheim plots of the current-voltage characteristics show current switch-on for each of these emitters.

Neutron and gamma-ray energy reconstruction for characterization of special nuclear material

  • Clarke, Shaun D.;Hamel, Michael C.;Di fulvio, Angela;Pozzi, Sara A.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1354-1357
    • /
    • 2017
  • Characterization of special nuclear material may be performed using energy spectroscopy of either the neutron or gamma-ray emissions from the sample. Gamma-ray spectroscopy can be performed relatively easily using high-resolution semiconductors such as high-purity germanium. Neutron spectroscopy, by contrast, is a complex inverse problem. Here, results are presented for $^{252}Cf$ and PuBe energy spectra unfolded using a single EJ309 organic scintillator; excellent agreement is observed with the reference spectra. Neutron energy spectroscopy is also possible using a two-plane detector array, whereby time-of-flight kinematics can be used. With this system, energy spectra can also be obtained as a function of position. Spatial-dependent energy spectra are presented for neutron and gamma-ray sources that are in excellent agreement with expectations.