• Title/Summary/Keyword: high-purity

Search Result 1,299, Processing Time 0.031 seconds

Radiolysis Assessment of $^{18}F$-FDG According to Automatic Synthesis Module (자동합성장치에 따른 $^{18}F$-FDG의 방사선분해 평가)

  • Kim, Si-Hwal;Kim, Dong-Il;Chi, Yong-Gi;Choi, Sung-Wook;Choi, Choon-Ki;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.1
    • /
    • pp.8-11
    • /
    • 2012
  • Purpose : Among quality control items, the radiochemical impurity must be below 10% of total radioactivity. In this regard, as the recently commercialized automatic synthesis module produces a large amount of 18F-FDG, radiolysis of radiopharmaceuticals is very likely to occur. Thus, this study compared the changes in radiochemical purity regarding radiolysis of $^{18}F$-FDG according to automatic synthesis module. Materials and methods : Cyclotron (PETtrace, GE Healthcare) was used to produce $^{18}F$ and automatic synthesis module (FASTlab, Tracerlab MX, GE Healthcare) was used to achieve synthesis into FDG. For radiochemical purity, Radio-TLC Scanner (AR 2000, Bioscan), GC (Gas Chromatograph, Agilent 7890A) was used to measure the content of ethanol included in $^{18}F$-FDG. Glass board applied with silica gel ($1{\times}10cm$) was used for stationary phase while a mixed liquid formed of acetonitrile and water (ratio 19:1) was used for mobile phase. High-concentration and low-concentration $^{18}F$-FDG were produced in each synthesis module and the radiochemical purity was measured every 2 hours. Results : The purity in low-concentration (below 2.59 GBq/mL) was measured as 99.26%, 98.69%, 98.25%, 98.09% in Tracerlab MX and as 99.09%, 97.83%, 96.89%, 96.62% in FASTlab according to 0, 2, 4, 6 hours changes, respectively. The purity in high-concentration (above 3.7 GBq/mL) was measured as 99.54%, 96.08%, 93.77%, 92.54% in Tracerlab MX and as 99.53%, 95.65%, 92.39%, 89.82% in FASTlab according to 0, 2, 4, 6 hours changes, respectively. Also, ethanol was not detected in GC of $^{18}F$-FDG produced in FASTlab, while 100~300 ppm ethanol was detected in Tracerlab MX. Conclusion : Whereas the change of radiochemical purity was only 3% in low-concentration $^{18}F$-FDG, the change was rapidly increased to 10% in high-concentration. Also, higher radiolysis were observed in $^{18}F$-FDG produced in FASTlab than Tracerlab MX. This is because ethanol is included in the synthesis stage of Tracerlab MX but not in the synthesis stage of FASTlab. Thus, radiolysis is influenced by radioactivity concentration than the inclusion of ethanol, which is the radioprotector. Therefore, after producing high-concentration $^{18}F$-FDG, the content must be diluted through saline to lower concentration.

  • PDF

Synthesis of High purity $TiO_2$ Powder from Elemental Titanium Particles (금속티타늄 분말로부터 고순도 $TiO_2$ 미분말 합성)

  • 조태환;송기세;이용민;송종택
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.3
    • /
    • pp.222-228
    • /
    • 1993
  • In order to obtian TiO2 fine powder of high purity, the new method which is different from the sulfate process and the chloride one was employed. TiO2 was syntehsized by the reaction between elemental titanium particles and H2O2 solutiosn at 30~7$0^{\circ}C$, and then TiO2 powder was characterized using XRD, SEM, TEM, DTA and FT-IR. It was found that the initial reaction rate was fast at a high temperature due to the high generation of activated oxygen associated with thedecomposition of H2O2. However, the reaction was slowly proceeded at a low temperature due to slow decomposition of H2O2. In this experimental range, the optimum temeprature was ocnsidered to be about 5$0^{\circ}C$. The primary particles of the hydrous titanium dioxide (TiO2 gel) before aging were spherical, and their mean sizes were about 50nm. The similar shapes and sizes were observed with calcinatin at 40$0^{\circ}C$. The FT-IR spectrum of Ti-OH in the TiO2 gel powder appeared at around 3380cm-1, 1630cm-1 and 530cm-1. This gel powder was crystallized into the anatase type TiO2 at 300~40$0^{\circ}C$.

  • PDF

Simulation and Optimization Study on the Pressure-Swing Distillation of Ethanol-Benzene Azeotrope (Ethanol-Benzene 공비혼합물의 분리를 위한 압력변환 증류공정의 전산모사)

  • Park, Hoey Kyung;Kim, Dong Sun;Cho, JungHo
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.450-456
    • /
    • 2015
  • In the present study, modelling and optimization of ethanol-benzene separation process were performed using pressure-swing distillation. Order to obtain a reliable results, vapour-liquid equilibrium (VLE) experiments of ethanol-benzene binary system were performed. The parameters of thermodynamic equation were determined using experimental data and the regression. The pressure-swing distillation process optimization was performed to obtain high purity ethanol and high purity benzene into a low-high pressure columns configuration and a high-low pressure columns configuration. The heat duty values of the reboiler from simulation were compared, and the process was optimized to minimize the heat duty.

Measurement of Optical Purity for Commercially Avialable Dexibuprofen and Ibuprofen Sold in 2013 (2013년도 시판된 Dexibuprofen과 Ibuprofen의 광학 순도 측정)

  • Ryoo, Sang Hyun;Lee, Sang Heon;Seo, Hae Chan;Song, Jung Suk;Ryoo, Dong Hyun;Yu, Jeong Jae;Kim, Hyun Young;Lee, Jae Hwan;Ryoo, Jae Jeong
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.3
    • /
    • pp.277-282
    • /
    • 2014
  • The optical purity of 11 commercial dexibuprofens and 7 ibuprofens sold in Korea in 2013 were examined by chiral HPLC. The Chiralcel OD-H column and LUX-Cellulose-1 column were used as chiral stationary phases and the mixed eluent of hexane:isopropanol:acetic acid as 100:1:0.1 was used as a mobile phase with a flow rate of 1.0 mL/min. Each data was obtained from an average value of at least three different experiments for each sample and the average value of relative standard deviation of them appeared very small, 0.19%. Average optical purity value (97.5%) of eleven commercial dexibuprofens used in this study were smaller than those of 9 years ago (99.2%), but larger than four years ago (95.6%). Enantiomeric ratios of (R)- and (S)-isomers of seven ibuprofen samples used in this experiment were achieved at about 50:50 which was different with the result (44:56) from four years ago.

Production of High purity $Mn_3O_4$Powder by Precipitation of Calcium fluoride in the Manganese Leaching Solution (망간침출액에서 불화칼슘화에 의한 高純度 망간酸化物의 製造)

  • 한기천;이계승;최재석;신강호;조동성
    • Resources Recycling
    • /
    • v.11 no.1
    • /
    • pp.3-8
    • /
    • 2002
  • In order to make the high purity Mn$_3$O$_4$powder for the raw material of soft ferrite, Mn is extracted from the dust and the extracted solution is refined. The dust is generated in producing a medium-low carbon ferromanganese and contains 90% Mn$_3$O$_4$. Mn$_3$O$_4$in the dust was reduced into MnO by roasting with charcoal. Injection of the 180g/L of the reduced dust into 4N HCI solution increased pH of the leaching solution higher than 5 and then a ferric hydroxide was precipitated. Because the ferric hydroxide co-precipitates with Si ion etc, Fe and Si ion was removed from the solution and the about 10% Mn solution was obtained. The solution was diluted with water to Mn-15000 ppm and $NH_4$F was injected into the diluted solution at $70^{\circ}C$ to the F-3000 ppm. As a result, Ca ion is precipitated as $CaF_2$and the residual concentration of Ca was 14 ppm. Injection of the equivalent (NH$1.5M_4$)$_2$$CO_3$solution as 2 L/min at $25^{\circ}C$ into the above solution precipitated a fine and high purity $MnCO_3$powder. The deposition was filtrated and roasted at $1000^{\circ}C$ for 2 hours. As a result, $MnCO_3$powder is converted into $Mn_3$$O_4$powder and it had $8.2\mu$m of median size. The final production is above 99% $Mn_3$$O_4$powder and it satisfied the requirement of high purity $Mn_3$$O_4$powder for a raw material of soft ferrite.

Recovery of high-purity phosphoric acid from the waste acids in semiconductor manufacturing process (반도체(半導體) 제조공정(製造工程)에서 발생하는 혼산폐액(混酸廢液)으로부터 고순도(高純度) 인산회수(燐酸回收))

  • Park, Sung-Kook;Roh, Yu-Mi;Lee, Sang-Gil;Kim, Ju-Yup;Shin, Chang-Hoon;Kim, Jun-Young;Ahn, Jae-Woo
    • Resources Recycling
    • /
    • v.15 no.5 s.73
    • /
    • pp.26-32
    • /
    • 2006
  • The waste solution discharged from the LCD manufacturing process contains acids like nitric, acetic and phosphoric acid and metal ions such as Al, Mo and other impurities. It is important to remove impurities less than 1 ppm in phosphoric acid to reuse as an etchant because the residual impurities even in sub-ppm concentration in semiconductor materials play a major role on the electronic properties. In this study, a mixed system of solvent extraction, diffusion dialysis and ion-exchange was developed to commercialize in an efficient system fur recovering the high-purity phosphoric acid. By vacuum evaporation, almost 99% of nitric and acetic acid was removed. And by solvent extraction method with tri-octyl phosphate (TOP) as an extractant, the removal of acetic and nitric acid from the acid mixture was achieved effectively at the ratio A/O=1/3 with 4th stage of extraction stage. About 97.5% of Al and 36.7% of Mo were removed by diffusion dialysis. Essentially almost complete removal of metal ions and purification of high-purity phosphoric acid could be obtained by using ion exchange.

Preparation of High Purity Galacto-Oligosaccharide and Its Prebiotic Activity In Vitro Evaluation (고순도 Galactooligosaccharide 제조 및 유산균 증식 활성)

  • Hong, Ki Bae;Suh, Hyung Joo;Kim, Jae Hwan;Kwon, Hyuk Kon;Park, Chung;Han, Sung Hee
    • The Korean Journal of Food And Nutrition
    • /
    • v.28 no.6
    • /
    • pp.1026-1032
    • /
    • 2015
  • This study attempted to find an efficient method for the preparation of high-purity galactooligosaccharides (HP-GOS) using ${\beta}$-galactosidase and yeast fermentation. GOS prepared using Lactozym 3000L showed the greatest enhancement in total GOS of the six ${\beta}$-galatosidases tested. GOS alone achieved 51% conversion of initial lactose. GOS production was enhanced by fermentation with commercial yeast (Saccharomyces cerevisiae); its concentration reached 71% after 36h fermentation with 8% yeast. Component sugar analysis with HPLC indicated that HP-GOS fermented with S. cerevisiae showed significantly increased levels of 4'/6'-galactosyllactose and total GOS as well as a significantly decreased glucose level. HP-GOS facilitated the growth of Lactobacillus sp. (L. acidophilus and L. casei) and Bifidobacterium sp. (B. longum and B. bifidum). In sum, high-purity GOS has been successfully produced through both an enzymatic process and yeast fermentation. GOS encourages the growth of bacteria such as Lactobacillus and Bifidobacterium that may be beneficial to human gastrointestinal health.

Separation of 2,6-dimethylnaphthalene in Dimethylnaphthalene Isomers Mixture by Crystallization Operation (결정화 조작에 의한 Dimethylnaphthalene 이성체 혼합물 중의 2,6-dimethylnaphthalene의 분리)

  • Kang, Ho-Cheol;Kim, Su Jin
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.116-120
    • /
    • 2014
  • Light cycle oil (LCO), one of the by-products of the catalytic cracking gasoline manufacturing process, contains a lot of valuable aromatics. In particular, 2,6-dimethylnaphthalene (2,6-DMN) contained in LCO has been becoming important as the basic material of polyethylene naphthalate plastic and liquid crystal polymer, etc. If it were possible to separate and purify the valuable aromatic hydrocarbons (such as 2,6-DMN) from LCO, which have only been used as fuel mixed with heavy oil, it would be very meaningful in terms of the efficient use of resources. We investigated the high-purity purification of 2,6-DMN by the combined method of melt crystallization (MC) and solute crystallization (SC). The enriched DMN isomer mixtures (concentration of 2,6-DMN : 10.43%) recovered from LCO by distillation-extraction combination and the crystal recovered by MC used as raw materials of MC and SC, respectively. The solvent of SC used was a mixture of methanol and acetone (60 : 40 wt%). The crystal of 2,6-DMN with a high-purity of 99.5% was recovered by MC-SC combination. We confirmed that the MC-SC combination was one of the very useful combinations for the high-purity purification of 2,6-DMN contained in the enriched DMN isomer mixtures.

Purity of γ-Dicalcium Silicate with Synthetic and Raw Materials Conditions (합성 및 원료 조건에 따른 γ-C2S의 순도)

  • Lee, Seok-Hee;Cho, Hyeong-Kyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.2
    • /
    • pp.123-128
    • /
    • 2020
  • γ-dicalcium silicate(γ-C2S) is known as a polymorphism of belite. Due to its high CO2 fixing capacity and the production process with low CO2 emission, γ-C2S has attracted more attention of researchers. For the further development of γ-C2S applications in construction industry, this study aims to investigate the method for synthesizing high purity of γ-C2S. The influence of raw materials and calcination temperatures on the purity of γ-C2S was evaluated. Several Ca bearing materials were selected as the calcium source, the materials which's main component is SiO2 were used as the silicon source. Raw materials were mixed and calcined under different temperatures. The results revealed that the highest purity could be obtained using Ca(OH)2 and SiO2 powder as raw materials. In addition, a relatively economic synthesis method using natural mineral materials-limestone and silica sand as raw materials were developed for the practical application. The purity of synthetic γ-C2S was recorded up to 77.6%.

Characteristics of Redox Agent with Additive in Steam-Iron Process for the High Purity Hydrogen Production (고순도 수소 생성을 위한 SIP법에서 첨가제에 따른 환원 특성)

  • Jeon, Bup-Ju;Kim, Sun-Myung;Park, Ji-Hun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.3
    • /
    • pp.340-348
    • /
    • 2011
  • Effects of various inorganic-metal oxide (Zr, Zn, Si, Al and Ca as promoters and stabilizers) additive on the reduction rate of iron oxide and the composition of forming hydrogen using the steam-iron cycle operation was investigated. The reduction rate of redox agent with additive was determined from weight change by TGA. The changes of weight loss and reduction rate according to redox agent with various additive affected the hydrogen purity and cycle stability of the process. The cyclic micro reactor showed that hydrogen purity exceeding 95% could be obtained by the water splitting with Si/Fe, Zn/Fe, Zr/Fe redox agents. The redox agents with these elements had an affect on redox cycle stability as a good stabilizer for forming hydrogen by the steam-iron process.