• Title/Summary/Keyword: high-precision digital map

Search Result 32, Processing Time 0.036 seconds

Digital Business Card System based on Augmented Reality (증강현실을 기반으로 한 디지털 명함 시스템)

  • Park, Man-Seub;Kim, Chang-Su;Jung, Hoe-Kyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.3
    • /
    • pp.562-568
    • /
    • 2014
  • With the development of computer technology, augmented reality (Augmented Reality, AR) technology in the future, one of the main directions of development of human interface technology is emerging. On augmented reality based on the design and implementation of a digital business card system. In this paper, a Smartphone is simply information through recognizable digital business card contains information about the system. Digital business card system is compared to the way existing hardware in a way visually-based high precision. In addition, registered as a 3D computer vision of augmented reality technology skills and real-world situations convergence technology for research. Future research, 3D electronic map for Smartphone apps as of the application user interface on the side for research is needed.

The 1:5,000 Forest Soil Map: Current Status and Future Directions (1:5,000 산림입지토양도의 제작과 활용 및 향후 발전 방향)

  • Kwon, Minyoung;Kim, Gaeun;Jeong, Jinhyun;Choi, Changeun;Park, Gwansoo;Kim, Choonsig;Son, Yowhan
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.4
    • /
    • pp.479-495
    • /
    • 2021
  • To improve on the efficient management of forest resources, it is necessary to create a forest soil map, which represents a comprehensive database of forest lands. Although a 1:25,000 scale forest site map has been used in Korea, the need for a large-scale forest soil map with high precision and information on forest lands that is specialized for individual purposes has been identified. Moreover, to keep pace with the advancement in forest management and transition to a digital society, it is essential to develop a method for constructing new forest soil maps that can diversify its use. Therefore, this paper presented a developmental process and used a 1:5,000 scale forest soil map to propose future directions. National maps showing the soil type, depth, and texture were produced based on the survey and analysis of forest soils, followed by the Forest Land Soil Map (1:5,000) Production Standard Manual. Alternatively, forest soil map data were the basis on which various other maps that can be used to prevent and predict forest disasters and evaluate environmental capacities were developed. Accordingly, ways to provide appropriate information to achieve the national forest plan, secure forestry big data, and accomplish sustainable forest management that corresponds to the national development plan are proposed based on results from the current study.

Trends on High-Precision Digital Map for Autonomous Driving Services (클라우드 연계 자율주행 맵 시스템 기술동향)

  • Choi, J.D.;Min, K.W.;Sung, K.B.;Han, S.J.;Lee, D.J.;Park, S.H.;Kang, J.G.;Jo, Y.W.
    • Electronics and Telecommunications Trends
    • /
    • v.32 no.4
    • /
    • pp.40-47
    • /
    • 2017
  • 자율주행 맵은 도로의 주행환경 정보(차로, 도로 마크, 신호등의 위치 등)와 시간에 따라 변화하는 동적 주행환경 정보(장애물 출현, 일시적인 통행제한, 긴급한 도로 복구, 교차로 교통혼잡 등)로 구성된다. 자율주행 맵 생성 및 갱신 기술은 차로 구분선이나, 도로 교통과 관련된 실시간 갱신 주기 측면에서 더욱 세밀하고, 정확한 위치 정보가 요구되며, 또한, 최신성을 유지하는 기능을 가진다. 이러한 고정밀 지도의 세밀함과 정확성, 최신성은 자율주행 서비스를 위해 요구되는 필수적인 요소이다. 클라우드와 연계하여 생성되는 자율주행 맵은 차량 운행 시 수집되는 정보를 클라우드에 축적하여 가공함으로써, 시간과 인력 투입을 통해 데이터를 취득하고 지도를 구축하는 면에서 작업 품을 효과적으로 개선하는 데 도움이 된다. 유지와 보수 측면에서는 정기적으로 또는 신속하게 갱신하여 최신의 정보를 유지하는 장점이 있다. 본고에서는 자율주행 맵을 생성하고 갱신하는 클라우드 연계 플랫폼과 연구 결과 일부를 소개한다.

Stream Environment Monitoring using UAV Images (RGB, Thermal Infrared) (UAV 영상(RGB, 적외 열 영상)을 활용한 하천환경 모니터링)

  • Kang, Joon-Oh;Kim, Dal-Joo;Han, Woong-Ji;Lee, Yong-Chang
    • Journal of Urban Science
    • /
    • v.6 no.2
    • /
    • pp.17-27
    • /
    • 2017
  • Recently, civil complaints have increased due to water pollution and bad smell in rivers. Therefore, attention is focused on improving the river environment. The purpose of this study is to acquire RGB and thermal infrared images using UAV for sewage outlet and to monitor the status of stream pollution and the applicability UAV based images for river embankment maintenance plan was examined. The accuracy of the 3D model was examination by SfM(Structure from Motion) based images analysis on river embankment maintenance area. Especially, The wastewater discharged from the factory near the river was detected as an thermal infrared images and the flow of wastewater was monitored. As a result of the study, we could monitor the cause and flows of wastewater pollution by detecting temperature change caused by wastewater inflow using UAV images. In addition, UAV based a high precision 3D model (DTM, Digital Topographic Map, Orthophoto Mosaic) was produced to obtain precise DSM(Digital Surface Model) and vegetation cover information for river embankment maintenance.

  • PDF

Automated Water Surface Extraction in Satellite Images Using a Comprehensive Water Database Collection and Water Index Analysis

  • Anisa Nur Utami;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.4
    • /
    • pp.425-440
    • /
    • 2023
  • Monitoring water surface has become one of the most prominent areas of research in addressing environmental challenges.Accurate and automated detection of watersurface in remote sensing imagesis crucial for disaster prevention, urban planning, and water resource management, particularly for a country where water plays a vital role in human life. However, achieving precise detection poses challenges. Previous studies have explored different approaches,such as analyzing water indexes, like normalized difference water index (NDWI) derived from satellite imagery's visible or infrared bands and using k-means clustering analysis to identify land cover patterns and segment regions based on similar attributes. Nonetheless, challenges persist, notably distinguishing between waterspectralsignatures and cloud shadow or terrain shadow. In thisstudy, our objective is to enhance the precision of water surface detection by constructing a comprehensive water database (DB) using existing digital and land cover maps. This database serves as an initial assumption for automated water index analysis. We utilized 1:5,000 and 1:25,000 digital maps of Korea to extract water surface, specifically rivers, lakes, and reservoirs. Additionally, the 1:50,000 and 1:5,000 land cover maps of Korea aided in the extraction process. Our research demonstrates the effectiveness of utilizing a water DB product as our first approach for efficient water surface extraction from satellite images, complemented by our second and third approachesinvolving NDWI analysis and k-means analysis. The image segmentation and binary mask methods were employed for image analysis during the water extraction process. To evaluate the accuracy of our approach, we conducted two assessments using reference and ground truth data that we made during this research. Visual interpretation involved comparing our results with the global surface water (GSW) mask 60 m resolution, revealing significant improvements in quality and resolution. Additionally, accuracy assessment measures, including an overall accuracy of 90% and kappa values exceeding 0.8, further support the efficacy of our methodology. In conclusion, thisstudy'sresults demonstrate enhanced extraction quality and resolution. Through comprehensive assessment, our approach proves effective in achieving high accuracy in delineating watersurfaces from satellite images.

Analysis of Spatial Resolution Characteristics for DMC/UlatraCamXp/ADS80 Digital Aerial Image Based on Visual Method (시각적 기법에 의한 DMC/UlatraCamXp/ADS80 디지털 항공영상의 공간해상도 특성 분석)

  • Lee, Tae Yun;Lee, Jae One
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.1
    • /
    • pp.61-68
    • /
    • 2016
  • Digital aerial images have been commonly used in a large scale map production owing to their excellent geometry, and high spatial and radiometric resolution in recent years. However, a quality verification process for acquired images should be preceded in order to secure the high precision and reliability of produced results. Several experimental studies to verify digital imaging systems have been vigorously researched by constructing permanent test field in abroad. On the other hand, it is urgently necessary to suggest a practical scheme for an image quality verification, because this related study and experiment are still in its early stage at home. Hence, this study aims to present an easy method to measure the spatial resolution of the image in a visual way using a portable Siemens star. The images used in the study were obtained with three different cameras, two frame array sensors of DMC, UltraCamXp and a linear array sensor of ADS80. The Siemens star target appeared in every image is extracted and then the spatial resolution of image is compared with theoretical GSD(Ground Sample Distance) by a visual method. In addition, the change of spatial resolution depending on the location of the Siemens star from image center and flight direction and cross-flight direction is also compared and analyzed. As study results, while the theoretical GSDs of images taken with each camera are about 6~9cm, the visual resolutions are 1.2~1.3 times as great as the theoretical ones.

CAS 500-1/2 Image Utilization Technology and System Development: Achievement and Contribution (국토위성정보 활용기술 및 운영시스템 개발: 성과 및 의의)

  • Yoon, Sung-Joo;Son, Jonghwan;Park, Hyeongjun;Seo, Junghoon;Lee, Yoojin;Ban, Seunghwan;Choi, Jae-Seung;Kim, Byung-Guk;Lee, Hyun jik;Lee, Kyu-sung;Kweon, Ki-Eok;Lee, Kye-Dong;Jung, Hyung-sup;Choung, Yun-Jae;Choi, Hyun;Koo, Daesung;Choi, Myungjin;Shin, Yunsoo;Choi, Jaewan;Eo, Yang-Dam;Jeong, Jong-chul;Han, Youkyung;Oh, Jaehong;Rhee, Sooahm;Chang, Eunmi;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.867-879
    • /
    • 2020
  • As the era of space technology utilization is approaching, the launch of CAS (Compact Advanced Satellite) 500-1/2 satellites is scheduled during 2021 for acquisition of high-resolution images. Accordingly, the increase of image usability and processing efficiency has been emphasized as key design concepts of the CAS 500-1/2 ground station. In this regard, "CAS 500-1/2 Image Acquisition and Utilization Technology Development" project has been carried out to develop core technologies and processing systems for CAS 500-1/2 data collecting, processing, managing and distributing. In this paper, we introduce the results of the above project. We developed an operation system to generate precision images automatically with GCP (Ground Control Point) chip DB (Database) and DEM (Digital Elevation Model) DB over the entire Korean peninsula. We also developed the system to produce ortho-rectified images indexed to 1:5,000 map grids, and hence set a foundation for ARD (Analysis Ready Data)system. In addition, we linked various application software to the operation system and systematically produce mosaic images, DSM (Digital Surface Model)/DTM (Digital Terrain Model), spatial feature thematic map, and change detection thematic map. The major contribution of the developed system and technologies includes that precision images are to be automatically generated using GCP chip DB for the first time in Korea and the various utilization product technologies incorporated into the operation system of a satellite ground station. The developed operation system has been installed on Korea Land Observation Satellite Information Center of the NGII (National Geographic Information Institute). We expect the system to contribute greatly to the center's work and provide a standard for future ground station systems of earth observation satellites.

Forest Thematic Maps and Forest Statistics Using the k-Nearest Neighbor Technique for Pyeongchang-Gun, Gangwon-Do (kNN 기법을 이용한 강원도 평창군의 산림 주제도 작성과 산림통계량 추정)

  • Yim, Jong-Su;Kong, Gee Su;Kim, Sung Ho;Shin, Man Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.3
    • /
    • pp.259-268
    • /
    • 2007
  • This study was conducted to produce forest thematic maps and estimate forest statistics for Pyeongchang Gun using the kNN technique, which has been applied to produce thematic maps of variables of interest including unobserved plots by combining field plot data, remotely sensed data and other digital map data in forest inventories. The estimation errors for three horizontal reference areas (HRAs), whose radii are 20, 40 and 60 km respectively, were compared. Although the precision for the 40 km radius was lower compared to that for the 60 km radius, the 40 km radius was found to be an efficient HRA because their difference in precision was modest. At a value of k=5 nearest neighbors for the selected HRA, the overall accuracy was high. As a result, using the k=5 neighbors within the HRA of 40 km radius, thematic maps of number of trees, basal area, and growing stock per hectare were generated. As compared to the forest statistics based on field sample plots, the estimated means of each parameter from the produced maps were underestimated.

Analysis of large-scale flood inundation area using optimal topographic factors (지형학적 인자를 이용한 광역 홍수범람 위험지역 분석)

  • Lee, Kyoungsang;Lee, Daeeop;Jung, Sungho;Lee, Giha
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.6
    • /
    • pp.481-490
    • /
    • 2018
  • Recently, the spatiotemporal patterns of flood disasters have become more complex and unpredictable due to climate change. Flood hazard map including information on flood risk level has been widely used as an unstructured measure against flooding damages. In order to product a high-precision flood hazard map by combination of hydrologic and hydraulic modeling, huge digital information such as topography, geology, climate, landuse and various database related to social economic are required. However, in some areas, especially in developing countries, flood hazard mapping is difficult or impossible and its accuracy is insufficient because such data is lacking or inaccessible. Therefore, this study suggests a method to delineate large scale flood-prone area based on topographic factors produced by linear binary classifier and ROC (Receiver Operation Characteristics) using globally-available geographic data such as ASTER or SRTM. We applied the proposed methodology to five different countries: North Korea Bangladesh, Indonesia, Thailand and Myanmar. The results show that model performances on flood area detection ranges from 38% (Bangladesh) to 78% (Thailand). The flood-prone area detection based on the topographical factors has a great advantage in order to easily distinguish the large-scale inundation-potent area using only digital elevation model (DEM) for ungauged watersheds.

Comparative Evaluation of Impervious Ratio between KNU and HKU Campus Using Google Earth (Google Earth를 이용한 경북대와 홍콩대 캠퍼스의 불투수율 비교평가)

  • Um, Jung-Sup
    • Journal of the Korean association of regional geographers
    • /
    • v.15 no.3
    • /
    • pp.421-433
    • /
    • 2009
  • The impervious ratio was frequently employed as a fundamental attribute will be used as a proxy of the total environmental burden in the urban area since it may contribute as much or more on a cumulative basis to the overall environmental condition. This research proposes a comparative evaluation framework in a more objective and Quantitative way for an impervious ratio in the university campus, using the Google Earth. Two university campuses (Kyungpook National University: KNU, Hong Kong University: HKUJ were selected as survey objectives in order to evaluate the potential of Google Earth in monitoring impervious conditions in the campus. The 61cm resolution of Quickbird data combined with digital map realistically identified the major type of impervious surface such as road, building and parking lots in the study area by large scale spatial precision. The impervious zones with persistently high road density and parking space were specifically identified over the KNU campus while the HKC campus was intensively covered by tree, resulting in almost twice (31%). as compared to KNU (18.4%), The methods of characterizing impervious surface used in this study are easily replicable using data that are primarily publicly available, and therefore the collection of impervious coverage data via Google Earth is, therefore, proposed as a practical alternative.

  • PDF