• Title/Summary/Keyword: high-power LED

Search Result 601, Processing Time 0.029 seconds

Thermo-ompression Process for High Power LEDs (High Power LED 열압착 공정 특성 연구)

  • Han, Jun-Mo;Seo, In-Jae;Ahn, Yoomin;Ko, Youn-Sung;Kim, Tae-Heon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.4
    • /
    • pp.355-360
    • /
    • 2014
  • Recently, the use of LED is increasing. This paper presents the new package process of thermal compression bonding using metal layered LED chip for the high power LED device. Effective thermal dissipation, which is required in the high power LED device, is achieved by eutectic/flip chip bonding method using metal bond layer on a LED chip. In this study, the process condition for the LED eutectic die bonder system is proposed by using the analysis program, and some experimental results are compared with those obtained using a DST (Die Shear Tester) to illustrate the reliability of the proposed process condition. The cause of bonding failures in the proposed process is also investigated experimentally.

Thermal Transient Characteristics of Die Attach in High Power LED Package

  • Kim Hyun-Ho;Choi Sang-Hyun;Shin Sang-Hyun;Lee Young-Gi;Choi Seok-Moon;Oh Yong-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.4 s.37
    • /
    • pp.331-338
    • /
    • 2005
  • The rapid advances in high power light sources and arrays as encountered in incandescent lamps have induced dramatic increases in die heat flux and power consumption at all levels of high power LED packaging. The lifetime of such devices and device arrays is determined by their temperature and thermal transients controlled by the powering and cooling, because they are usually operated under rough environmental conditions. The reliability of packaged electronics strongly depends on the die attach quality, because any void or a small delamination may cause instant temperature increase in the die, leading sooner or later to failure in the operation. Die attach materials have a key role in the thermal management of high power LED packages by providing the low thermal resistance between the heat generating LED chips and the heat dissipating heat slug. In this paper, thermal transient characteristics of die attach in high power LED package have been studied based on the thermal transient analysis using the evaluation of the structure function of the heat flow path. With high power LED packages fabricated by die attach materials such as Ag paste, solder paste and Au/Sn eutectic bonding, we have demonstrated characteristics such as cross-section analysis, shear test and visual inspection after shear test of die attach and how to detect die attach failures and to measure thermal resistance values of die attach in high power LED package. From the structure function oi the thermal transient characteristics, we could know the result that die attach quality of Au/Sn eutectic bonding presented the thermal resistance of about 3.5K/W. It was much better than those of Ag paste and solder paste presented the thermal resistance of about 11.5${\~}$14.2K/W and 4.4${\~}$4.6K/W, respectively.

  • PDF

Development of LED Module Control-based PWM Current for Control of Heat-dissipation (방열특성 제어를 위한 PWM 전류제어 기반 LED 모듈 개발)

  • Lee, Seung-Hyun;Moon, Han Joo;Hue, Seong-bum;Choi, Seong-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.6
    • /
    • pp.129-135
    • /
    • 2015
  • This paper shows significant methods that improve the lifespan of LED modules as well as efficiently using an aluminum heat-sink for LED module in high power. It proposes a method that raises stability and lifespan to protect LED modules and the power unit when the LED module has been used for a long hours at high temperatures. During the research, we applied a method of pulse-width modulation (PWM) in order to prevent the phenomenon that the entire power of a system is turned off and the lifespan is reduced when the LED nodule reacts to the high temperatures. To protect the LED module and SMPS based on high efficiency, a temperature sensor is attached underneath the circuit board and the sensor measures the temperature of circuit board when the LED module is powered on. The electrical power connected to SMPS is controlled by PWM when the temperature of the LED module reaches a particular temperature.

The Characteristics of High Power AlGaAs/AlGaAs Infrared LED with DDH structure (DDH 구조를 갖는 고출력 AlGaAs/AlGaAs 적외선 LED소자의 특성)

  • Lee, Eun-Cheol;Ra, Yong-Choon;Eom, Moon-Jong;Lee, Cheol-Jin;Sung, Man-Young;Sung, Yung-Kwon
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1459-1461
    • /
    • 1996
  • The optical and electrical properties of High Power AlGaAs/AlGaAs Infrared LED with DDH( Double power Double Hetero Junction) structure are investigated. The high power LED is recently studied in order to apply to high speed communication devices. The power out of AlGaAs/AlGaAs with DDH structure is 13.0[mW], the forward voltage is 1.45[V], and the average decrease rate of power out is about 5[%] after aging test. The optical and electrical properties of DDH structure LED are superior than that of SH structured LED. The DDH structured LED is suitable to the high speed communication devices.

  • PDF

72[W] Power LED Photovoltaic Lighting System including the Current Limiting Function (전류제한 기능을 갖는 72[W ]급 파워 LED 태양광 보안등)

  • Park, Hyo-Sik;Han, Woo-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.8
    • /
    • pp.2999-3004
    • /
    • 2010
  • In comparison with some other light sources, LED has merits such as long lifetime, pollution free, and high energy efficiency. Lately, due to development of LED with high brightness and capacity, LED, which has been applied in display system only, has applied in the field of lighting system. As power LED for lighting system can be burned out by heat problem, the driving current of power LED has to be controlled below the designed value. In this paper, power LED photovoltaic lighting system, which has the current limitting function, has been described. After photovoltaic power is generated from PV panel. it is charged into a battery. And then, after the charged power is converted to DC24[V] through a boost DC-DC converter, it is supplied to power LED at night. It has been validated by designing and testing of 72[W] power LED lighting system, which includes a PV charger, a boost DC-DC converter and a current limiter for driving power LED.

A Novel Module Control Technology for High-Power LED Backlight

  • Su, Chun-Wei;Chiang, Chin-I;Li, Tzung-Yang;Tsou, Chien-Lung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1326-1329
    • /
    • 2009
  • In large-area LCD displays, we have developed two new control technologies for high-power LED backlight. The Novel control technology called scanning control and local gray control. In addition, a conceptual display system power management was developed. We have implemented high power-LED module driving system which can achieve power saving and cost down. Finally, we designed LED light-bar module of the side type as a backlight source. It not only achieved light & thin but also reduced the quantity of LEDs.

  • PDF

A Study on the LED Spotlight with a High Power using an Aspherical Optical System (비구면 광학계를 이용한 고출력 LED 스포트라이트에 관한 연구)

  • Moon, Jae-Il;Yoo, Kyung-Sun;Hyun, Dong-Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.487-492
    • /
    • 2012
  • In this study we researched a spotlight in LED lighting. Ordinary LED spotlight was manufactured with characterized property of traveling straightness of LED light source, but multiple use of shell type LED, a yellow band has formed caused by light source interference between the LED. Also, there was a high miscellaneous light efficiency with losing light source homogeneity and efficiency due to light source control uneasiness. The study uses aspheric reflector and aspheric lens, so we can control the light source of LED spotlight with effectively and we reached surface light source by using COB/COM for LED module. Furthermore it can change its use by a reduced scale of light system. It has been designed to make its various application from low power consumption of bicycle lamp, up to high power consumption of automobile lamps and lighthouse.

A Study on Methodology to Improve the Power Factor of the High Power LED Module (고출력 LED 모듈 역률 개선 방법 연구)

  • Lho, Young Hwan
    • Journal of IKEEE
    • /
    • v.18 no.3
    • /
    • pp.335-340
    • /
    • 2014
  • Recently, LED (Light Emitting Diode) becomes to be useful to apply for the lightening sources in electric systems and the lightening equipment since the power is less consumed with high efficiency, and the size and the weight of LED are small and light, respectively. The LED is controlled with constant current and SMPS (Switching Mode Power Supply). It is necessary for the LED manufacturer to secure the fundamental technology of designing LED chip, and to study the methodology to improve the power factor (PF) and to design the operational circuit for the development of LED to reduce the power loss in the application of LED lightening. The direct AC (Alternating Current) LED driving circuit, HV9910, is widely used in the industry field. In this paper, it is to evaluate the improved methodology for the power factor and efficiency through simulations when PFC (Power Factor Correction) and Noise Filter are added to HV9910.

Balanced Forward-Flyback Converter for High Efficiency and High Power Factor LED Driver (고효율 및 고역률 LED 구동회로 위한 Balanced Forward-Flyback 컨버터)

  • Hwang, Min-Ha;Kang, Jeong-Il;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.492-500
    • /
    • 2013
  • A balanced forward-flyback converter for high efficiency and high power factor using a foward and flyback converter topologies is proposed in this paper. The conventional AC/DC flyback converter can achieve a good power factor but it has the high offset current through the transformer magnetizing inductor, which results in a large core loss and low power conversion efficiency. And, the conventional forward converter can achieve the good power conversion efficiency with the aid of the low core loss but the input current dead zone near zero cross AC input voltage deteriorates the power factor. On the other hand, since the proposed converter can operate as the forward and flyback converters during switch turn-on and turn-off periods, respectively, it cannot only perform the power transfer during an entire switching period but also achieve the high power factor due to the flyback operation. Moreover, since the current balanced capacitor can minimize the offset current through the transformer magnetizing inductor regardless of the AC input voltage, the core loss and volume of the transformer can be minimized. Therefore, the proposed converter features a high efficiency and high power factor. To confirm the validity of the proposed converter, theoretical analysis and experimental results from a prototype of 24W LED driver are presented.

A Study on the Efficiency of a High Power Factor LED Driver Circuit (고역률 LED 구동회로의 효율화에 관한 연구)

  • Lee, Dong Won;Kim, Byungcheul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.8
    • /
    • pp.629-634
    • /
    • 2013
  • The rectified voltage supplied to LED lamp is used in load and then the surplus voltage can be produced in LED lighting. In this case, LED lighting is proposed that can recyclable the excess voltage to supply power to the controller.