• 제목/요약/키워드: high-ozone episode

검색결과 45건 처리시간 0.019초

대구시의 고농도 오존 발생 일에 나타나는 기상학적 특성 (Meteorological Characteristics of High-Ozone Episode Days in Daegu, Korea)

  • 손임영;김희종;윤일희
    • 한국지구과학회지
    • /
    • 제23권5호
    • /
    • pp.424-435
    • /
    • 2002
  • 이 연구에서는 1997년부터 1999년 3년 간 대구광역시의 시간별 O$_3$ 농도 자료와 기상자료를 분석하여, 대구시의 고농도 오존 발생 일에 나타나는 기상학적 특성을 알아보고자 한다. 고농도 오존 발생 일의 선정은 우리나라 환경기준치인 1시간 평균 오존 농도 100ppb를 초과한 지점이 대구시의 6개 측정 지점 중 한 지점이라도 있는 경우로 정했다. 고농도 오존 발생 일은 13일이었으며, 5월과 9월이 가장 그 빈도가 높았다. 고농도 오존 발생 일의 하루 평균 최대 오존 농도는 81.6ppb이었으며, 8시간 평균 농도는 58.6ppb이었다. 이는 대구의 오존 오염이 연속적으로 그리고 광범위하게 일어났고 있음을 의미한다. 하루 최고 오존 농도는 일사량, 최고 온도와 양의 상관을 보였으며, 상대 습도, 풍속, 구름양과는 음의 상관을 보였다. 일사량과의 상관계수가 0.45로 가장 높았다. 고농도 오존 발생 일의 기상 값과 그 날을 포함하는 월평균 값과의 차이를 보면, +1.58hPa(해면 기압), +3.45${\circ}$C(최고 기온), -5.69%(상대 습도), -0.46ms$^{-1}$(풍속), -1.79(구름양), +3.97MJm$^{-2}$(일사량)을 각각 보였다. 이는 0700${\sim}$1100LST사이의 높은 일사량, 낮은 풍속, 무강수가 고농도 예측의 중요특징임을 나타낸다. 이는 이 시간의 정체와도 연관이 있다.

봄철 서울지역 야간 오존농도 상승에 미치는 장거리 수송의 영향 (The Influence of Long-range Transport on Springtime Nocturnal Ozone Enhancement in Seoul)

  • 오인보;김유근
    • 한국대기환경학회지
    • /
    • 제20권4호
    • /
    • pp.503-514
    • /
    • 2004
  • In Seoul metropolitan area, nocturnal variation of surface ozone concentrations observed at 27 monitoring sites from 1998 to 2002 showed that high ozone levels occurred frequently during the spring. Frequency distributions for nighttime ozone indicated that elevated concentrations in spring were influenced by advection of different air mass compared to other seasons. Surface wind analysis during the spring revealed that relatively strong southwesterly winds were associated with nocturnal ozone enhancement, which can be attributed to the regional transport of ozone. In order to identify the origin of nocturnal ozone enhancement in spring, 3-day backward trajectories were calculated by HYSPLIT 4 for the episode days and then classified. The results showed that NW, W, and SW flows, indicating influence of polluted air masses from the China continent, have 51% in a]1 the episode days, which suggest that the nocturnal ozone enhancement can occur under the effect of long-range transport of ozone-laden air mass on a regional scale. Case study of nocturnal ozone maxima associated with long-range transport was discussed in more detail in the light of meteorological conditions. Southwesterly synoptic flow along the outer edge of moving high-pressure system was found to be the important cause of nocturnal ozone maxima in Seoul. This flow could lead to be long-range transport of ozone that had effectively accumulated in the stagnating portion of the system located eastern coast of China. Low atmosphere soundings, backward trajectories, and elevated ozone and CO levels at the back-ground tiles gave evidence for regional effects on nocturnal ozone enhancement In Seoul.

대기질 모사를 통한 인접지역 배출량이 광양만 오존농도에 미치는 영향분석 - 2010년 6월 사례를 중심으로 (Estimating Influence of Local and Neighborhood Emissions on Ozone Concentrations over the Kwang-Yang Bay based on Air Quality Simulations for a 2010 June Episode)

  • 김순태;이종범
    • 한국대기환경학회지
    • /
    • 제27권5호
    • /
    • pp.504-522
    • /
    • 2011
  • Simulations of CMAQ with the High-order Decoupled Direct Method (HDDM) for a 2010 June episode are applied to estimate the influence of local and neighborhood emissions on ozone concentrations in the Kwang-Yang Bay (KYB) area. In order to examine ozone response to reductions in $NO_x$ and VOC emissions from KYB and Gyeongsang, ozone isopleths are generated with the first and second-order sensitivity coefficients from HDDM simulations at three sites; Taein, Samil, and Gwangmoo. Simulations show that reduction in KYB $NO_x$ may increase ozone over the sites. On the contrary, $NO_x$ reduction from Gyeongsang may decrease ozone at the sites when transport of ozone and its precursors from upwind Gyeongsang is potentially high. However, VOC reductions from KYB and Gyeongsang are favorable to lower ozone over KYB. The study implies that emission reductions for both local and neighboring areas are likely more effective to bring KYB to ozone attainment.

오존 대기 환경기준의 비교 연구 (A Comparative study on Ambient Air Quality Standard for Ozone)

  • 허정숙;김태오;김동술
    • 한국대기환경학회지
    • /
    • 제15권2호
    • /
    • pp.159-173
    • /
    • 1999
  • Based on air quality monitoring data('89~'97) operated by the Department of Environment, we provide various fundamental statistics for ground ozone. The purpose of this paper are to review the national ambient ozone standard, to study spatial distribution of ozone. Since we, in Korea, calculate average ozone level, to examine the occurrences of ozone level 3 times a day (1~8, 9~16, 17~24 hours), the method does not seem to be scientifically sound comparing to a running average method adapted by the USEPA. When we counted the number of cases with 8-h average O3 level exceeding 60ppb(8-h average standard in Korea)and 80 ppb (that in the U.S.A) and also when we calculated 8-hour average ozone level based on th US method, some regions were classified as non-attainment areas. Especially in Seoul, results of spatial distribution analysis showed that high level ozone over 80 ppb was observed at Kuui-Dong and Pangi-Dong in the eastern part and at Ssangmun-Dong in the northeastern part. Also, occurrences of ozone episode defined as number of days then ozone level exceeding 80 ppb for 3 consecutive hours were extensively reviewed in this paper.

  • PDF

The Characterization of Surface Ozone Concentrations in Seoul, Koera

  • Heo, Jeong-Sook;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제18권E3호
    • /
    • pp.129-142
    • /
    • 2002
  • This paper provides a long-term perspective for ozone concentrations at 20 national air quality monitoring sites in Seoul from 1989 to 1998, which were managed by the Korean Ministry of Environment. Ozone episodes occurred more frequently in the east areas (Bangi, Guui, Seongsu, and Ssangmun) than in the west area (Guro and Oryu). When an ozone episode happened, hourly ozone concentrations over 80 ppb continued for an average of 4.0 hours at all sites. Annual variations in daily mean and maximum oBone concentrations showed broadly consistent upward trends at Ssangmun and Gwanaksan. Monthly mean ozone concentrations were the highest from May to June and the 99$^{th}$ and 95$^{th}$ percentile levels appeared higher during June, July, and August. The diurnal patterns of hourly mean ozone levels in urban areas showed typical photochemical formation and destruction, while the flat diurnal shape before 1996 at Gwanaksan indicated few significant photochemical reactions due to a lack of precursors of ozone. The occurrence of ozone over 80 ppb was ascribed to meteorological conditions such as high temperature, strong solar radiation, low relative humidity, and low wind speed with winds most frequently in a westerly direction.

UAM-V를 이용한 부산지역 고농도 오존사례 수치모의 (Numerical Simulation of Ozone using UAM-V on Summer Episode in the Costal Urban Area, Busan)

  • 김유근;오인보;황미경
    • 한국대기환경학회지
    • /
    • 제19권1호
    • /
    • pp.1-11
    • /
    • 2003
  • Temporal and horizontal distributions of surface ozone concentrations covering the Busan metropolitan area were simulated by UAM -V (The Variable grid Urban Airshed Model) that was run with meteorological inputs taken from MM5 for ozone episode day (18 July 1999). UAM-V underestimated the daily maximum ozone con-centration about 14 ppb on average at all monitoring sites within Busan area comparing with observed value. but the correlation between observed and simulated values showed quite significant (R = 0.896, p< 0.01 on average). Higher concentrations of ozone occurred near the city center and industrial areas (western side of city) with high levels of anthropogenic source in the morning, and transport of ozone and its precursors by sea breeze developed in the afternoon contributed to elevated ozone levels in downwind rural areas. Particalarly in slightly downwind area of city center, the highest daily maximum ozone concentration ($\geq$120 ppb) was simulated by UAM-V at 1400 LST. Consequently, local environments including emission distributions and land -sea breeze circulation influenced ozone distributions in the Busan metropolitan area.

2004년 여름 서울에서 발생한 고농도 오존 사례의 광화학적 분석 (Photochemical Analysis of Ozone Episodes in the Metropolitan Area of Seoul During the Summer 2004)

  • 손장호
    • 한국대기환경학회지
    • /
    • 제22권3호
    • /
    • pp.361-371
    • /
    • 2006
  • This study examines ozone episodes occurred during the intensive sampling periods (Jun. 1-30, 2004) in the air of Seoul metropolitan area. During that period, there were 8 events (or days) in which 1 hr averaged ozone concentrations were greater than 100 ppbv. The photochemical analysis of ozone chemistry (i.e., budget and formation and destruction strengths of ozone) was carried out using a photochemical box model. Peaks in diurnal ozone variations during ozone episode periods occurred were concurrent with the sudden change of the slope of $NO_{2}/NO$ ratio, suggesting significant correlation with photochemical reactivity. In addition, the ozone peaks were concurrent with high concentrations of ozone precursors, peroxy radicals of $HO_{2},\;CH_{3}O_{2},\;and\;RO_{2}$. High ozone levels during the ozone episodes are likely to be affected by ozone destruction rate.

2006년 오존 고농도 사례 시 부산권 지역 isoprene 배출이 오존 농도에 미치는 영향 분석 (Influence of Isoprene Emissions on Ozone Concentrations in the Greater Busan Area during a High Ozone Episode in 2006)

  • 김유근;조영순;송상근;강윤희;오인보
    • 한국환경과학회지
    • /
    • 제19권7호
    • /
    • pp.829-841
    • /
    • 2010
  • The estimation of a biogenic volatile organic compound (BVOC, especially isoprene) and the influence of isoprene emissions on ozone concentrations in the Greater Busan Area (GBA) were carried out based on a numerical modeling approach during a high ozone episode. The BVOC emissions were estimated using a biogenic emission information system (BEIS v3.14) with vegetation data provided by the forest geographical information system (FGIS), land use data provided by the environmental geographical information system (EGIS), and meteorological data simulated by the MM5. Ozone simulation was performed by two sets of simulation scenarios: (1) without (CASE1) and (2) with isoprene emissions (CASE2). The isoprene emission (82 ton $day^{-1}$) in the GBA was estimated to be the most dominant BVOC followed by methanol (56) and carbon monoxide (28). Largest impacts of isoprene emissions on the ozone concentrations (CASE2-CASE1) were predicted to be about 4 ppb in inland locations where a high isoprene was emitted and to be about 2 ppb in the downwind and/or convergence regions of wind due to both the photochemical reaction of ozone precursors (e.g., high isoprene emissions) and meteorological conditions (e.g., local transport).

부산 동삼동 지역의 지표오존농도 특성 연구 (A Study on the Characteristics of Surface Ozone Concentration at Dongsamdong, Pusan)

  • 전병일
    • 환경영향평가
    • /
    • 제8권2호
    • /
    • pp.21-29
    • /
    • 1999
  • This study was conducted to investigate the characteristics of surface ozone concentration and occurrence of high ozone concentration using hourly ozone and meteorological data of 1997~1998 in Pusan coastal area. Monthly mean ozone concentration was highest in Spring(35.4ppb) and lowest in Winter(22.2ppb). Relative standard deviation indicating clearness of observation site was 0.42 that is similar to urban area. The diurnal variation of ozone concentration of Dongsamdong showed maximum at 15~16LST and minimum 07~08LST that typical pattern of ozone concentration. In ozone episode period(May 18~23, 1998), diurnal change of ozone concentration was very high, and ozone concentration was related to meteorological parameters such as temperature, relative humidity, wind speed, cloud amount and radiation on a horizontal surface.

  • PDF

기상 입력 자료가 연안지역 고농도 오존 수치 모의에 미치는 영향 (Numerical Study on the Impact of Meteorological Input Data on Air Quality Modeling on High Ozone Episode at Coastal Region)

  • 전원배;이화운;이순환;최현정;김동혁;박순영
    • 한국대기환경학회지
    • /
    • 제27권1호
    • /
    • pp.30-40
    • /
    • 2011
  • Numerical simulations were carried out to investigate the impact of SST spatial distribution on the result of air quality modeling. Eulerian photochemical dispersion model CAMx (Comprehensive Air quality Model with eXtensions, version 4.50) was applied in this study and meteorological fields were prepared by RAMS (Regional Atmospheric Modeling System). Three different meteorological fields, due to different SST spatial distributions were used for air quality modeling to assess the sensitivity of CAMx modeling to the different meteorological input data. The horizontal distributions of surface ozone concentrations were analyzed and compared. In each case, the simulated ozone concentrations were different due to the discrepancies of horizontal SST distributions. The discrepancies of land-sea breeze velocity caused the difference of daytime and nighttime ozone concentrations. The result of statistic analysis also showed differences for each case. Case NG, which used meteorological fields with high resolution SST data was most successfully estimated correlation coefficient, root mean squared error and index of agreement value for ground level ozone concentration. The prediction accuracy was also improved clearly for case NG. In conclusion, the results suggest that SST spatial distribution plays an important role in the results of air quality modeling on high ozone episode at coastal region.