• Title/Summary/Keyword: high-low frequency decomposition

Search Result 53, Processing Time 0.022 seconds

Image Global K-SVD Variational Denoising Method Based on Wavelet Transform

  • Chang Wang;Wen Zhang
    • Journal of Information Processing Systems
    • /
    • v.19 no.3
    • /
    • pp.275-288
    • /
    • 2023
  • Many image edge details are easily lost in the image denoising process, and the smooth image regions are prone to produce jagged. In this paper, we propose a wavelet-based image global k- singular value decomposition variational method to remove image noise. A layer of wavelet decomposition is applied to the noisy image first. Then, the image global k-singular value decomposition (IGK-SVD) method is used to remove the random noise of low-frequency components. Furthermore, a constructed variational denoising method (VDM) removes the random noise in the high-frequency component. Finally, the denoised image is obtained by wavelet reconstruction. The experimental results show that the proposed method's peak signal-to-noise ratio (PSNR) value is higher than other methods, and its structural similarity (SSIM) value is closer to one, indicating that the proposed method can effectively suppress image noise while retaining more image edge details. The denoised image has better denoising effects.

Decomposition of Harmful Materials by SPCP Discharge (연변방전에 의한 유해물질의 분해제거)

  • 우인성;황명환
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.11
    • /
    • pp.1043-1048
    • /
    • 1998
  • The decomposition performance of the Surface induced Plasma Chemical Processing(SPCP) for benzene, toluene, xylene and $NO_2$ were experimentally examined. Discharge exciting frequency range was 5kHz and 10kHz, and low frequency discharge requires high voltage to inject high electric power in gas and to decompose contaminants. The decomposition rate of dioxide nitrogen for 5kHz power in gas and to decompose contaminants. The decomposition rate of dioxide nitrogen for 5kHz power supply is only 85%, but it’s rate for 10kHz power supply is very high, more than 96% when peak voltage is 12kv. Aromatic hydrocarbon vapor of up to 1000ppm is almost throughly decomposed at the flow rate of 1000$\ell$/min or lower rate under the discharge with electric power of several hundred watts. High decomposition rate is shown in every case, that is, for SPCP reactor is necessary to obtain the decomposition rate of more than 80~98%. The decomposition rate of benzene, toluene and xylene were 90~98% and dioxide nitrogen was 45~96%.

  • PDF

Low- Temperature Decomposition of Epoxy Resin

  • Katsuhiko Saido;Hiroyuki Taguchi;Yoichi Kodera;Takeshi Kuroki;Park, Jeong-Hun;Chung, Seon-Yong
    • Macromolecular Research
    • /
    • v.12 no.5
    • /
    • pp.490-492
    • /
    • 2004
  • We report a new method using a heating medium for the thermal decomposition of epoxy resin (EP) at temperatures ranging from 50 to 200$^{\circ}C$. EP decomposition also occurred below 50$^{\circ}C$ during a 6-day period to generate bisphenol A (BPA) at concentrations as high as 5 ppm. When polyethylene glycol was used as a heating medium, we determined the kinetics of the EP decomposition at low temperature. We determined the apparent activation energy of the overall decomposition to be 40.8 kJ/mol and the frequency factor to be 2.3${\times}$10$^3$ by monitoring the rate of BPA formation. Thus, EP is clearly unstable upon the application of heat.

An Experimental Study for Void Lengths and Locations under Concrete Tunnel Lining using Radar Method (레이더법을 이용한 터널 배면 공동 영향특성 실험)

  • Park, Seok-Kyun;Kim, Dae-Hun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.363-366
    • /
    • 2005
  • The radar method based non-destruction inspection stands in the spotlight of concrete tunnel lining due to the advantages of less restrictions of applicability, simpleness and quickness. However, in the case of utilizing at constructions, the decomposition ability is decreased because the effect of damping and dispersion is potent and the utilization of high frequency is difficult. In particular, it is very difficult to investigate the size and thickness of tunnel using the low frequency radar with low decomposition ability In this work, to resolve the above problems, the effect of arrangement between adjacent tunnels is investigated utilizing the low frequency radar and results are reported

  • PDF

Oscillating Boundary Layer Flow and Low Frequency Instability in Hybrid Rocket Combustion (하이브리드 로켓 연소에서의 경계층 진동 변화와 저주파수 연소불안정)

  • Kim, Jina;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.720-727
    • /
    • 2019
  • Resonating thermal lags of solid fuel with heat transfer oscillations generated by boundary layer oscillation is the primary mechanism of the occurrence of the LFI (Low Frequency Combustion Instability) in hybrid rocket combustion. This study was experimentally attempted to confirm that how the boundary layer was perturbed and led to the LFI. Special attention was also made on oxidizer swirl injection to investigate the contribution to combustion stabilization. Also the overall behavior of fluctuating boundary layer flow and the occurrence of the LFI was monitored as swirl intensity increased. Fluctuating boundary layer was successfully monitored by the captured image and POD (Proper Orthogonal Decomposition) analysis. In the results, oscillating boundary layer became stabilized as the swirl intensity increases. And the coupling strength between high frequency p', q' diminished and periodical amplification of RI (Rayleigh Index) with similar frequency band of thermal lag was also decreased. Thus, results confirmed that oscillating axial boundary layer triggered by periodic coupling of high frequency p', q' is the primary mechanism to excite thermal resonance with thermal lag characteristics of solid fuel.

Color-Image Guided Depth Map Super-Resolution Based on Iterative Depth Feature Enhancement

  • Lijun Zhao;Ke Wang;Jinjing, Zhang;Jialong Zhang;Anhong Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2068-2082
    • /
    • 2023
  • With the rapid development of deep learning, Depth Map Super-Resolution (DMSR) method has achieved more advanced performances. However, when the upsampling rate is very large, it is difficult to capture the structural consistency between color features and depth features by these DMSR methods. Therefore, we propose a color-image guided DMSR method based on iterative depth feature enhancement. Considering the feature difference between high-quality color features and low-quality depth features, we propose to decompose the depth features into High-Frequency (HF) and Low-Frequency (LF) components. Due to structural homogeneity of depth HF components and HF color features, only HF color features are used to enhance the depth HF features without using the LF color features. Before the HF and LF depth feature decomposition, the LF component of the previous depth decomposition and the updated HF component are combined together. After decomposing and reorganizing recursively-updated features, we combine all the depth LF features with the final updated depth HF features to obtain the enhanced-depth features. Next, the enhanced-depth features are input into the multistage depth map fusion reconstruction block, in which the cross enhancement module is introduced into the reconstruction block to fully mine the spatial correlation of depth map by interleaving various features between different convolution groups. Experimental results can show that the two objective assessments of root mean square error and mean absolute deviation of the proposed method are superior to those of many latest DMSR methods.

Seismic attributes for characterization of a heavy-oil shaly-sand reservoir in the Muglad Basin of South Sudan

  • Deng, William A.;Kim, Taeyoun;Jang, Seonghyung
    • Geosciences Journal
    • /
    • v.22 no.6
    • /
    • pp.1027-1039
    • /
    • 2018
  • Seismic attributes are often used to identify lithology and evaluate reservoir properties. However, interpretation based only on structural attributes and without knowledge of the Vp/Vs ratio can limit the ability to evaluate changes in heavy oil reservoirs. These limitations are often due to less obvious impedance differences. In order to investigate pieces of evidence of a heavy-oil shaly-sand reservoir from seismic data, besides geochemistry, we studied seismic attributes and characterized the reservoir using seismic stack data and well logging data. The study area was the Muglad rift basin in South Sudan. We conducted a seismic complex analysis to evaluate the target reservoir. To delineate the frequency responses of the different lithological units, we applied the spectral decomposition method to the target reservoir. The most unexpected result was continuous bands of strong seismic reflectors in the target reservoir, which extended across the borehole. Spectral decomposition analysis showed that the low-frequency zone of 25 Hz dominant frequency was consistent with instantaneous attributes. This approach can identify lithology, reveal frequency anomalies, and filter the stacked section into low- and high-frequency bands. The heavy-oil reservoir zones exhibited velocity attenuation and the amplitude was strongly frequency dependent.

Linear Sub-band Decomposition based Pre-processing Algorithm for Perceptual Video Coding (지각적 동영상 부호화를 위한 선형 부 대역 분해 기반 전처리 기법)

  • Choi, Kwang Yeon;Song, Byung Cheol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.1
    • /
    • pp.80-87
    • /
    • 2017
  • This paper proposes a pre-processing algorithm to improve perceptual video coding efficiency which decomposes an input frame via a sub-band decomposition, and suppresses only high frequency band(s) having low visual sensitivity. First, we decompose the input frame into several frequency subbands by a linear sub-band decomposition. Next, high frequency subband(s) which is rarely recognized by human visual system (HVS) is suppressed by applying relatively small gain(s). Finally, the high frequency suppressed frame is compressed by a specific video encoder. We can find from the experimental results that if comparing before-use and after-use of the proposed pre-processing prior to the encoder, no visual difference is shown. Also, the proposed algorithm achieves bit-saving of 13.12% on average in a H.264 video encoder.

Empirical mode decomposition based on Fourier transform and band-pass filter

  • Chen, Zheng-Shou;Rhee, Shin Hyung;Liu, Gui-Lin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.939-951
    • /
    • 2019
  • A novel empirical mode decomposition strategy based on Fourier transform and band-pass filter techniques, contributing to efficient instantaneous vibration analyses, is developed in this study. Two key improvements are proposed. The first is associated with the adoption of a band-pass filter technique for intrinsic mode function sifting. The primary characteristic of decomposed components is that their bandwidths do not overlap in the frequency domain. The second improvement concerns an attempt to design narrowband constraints as the essential requirements for intrinsic mode function to make it physically meaningful. Because all decomposed components are generated with respect to their intrinsic narrow bandwidth and strict sifting from high to low frequencies successively, they are orthogonal to each other and are thus suitable for an instantaneous frequency analysis. The direct Hilbert spectrum is employed to illustrate the instantaneous time-frequency-energy distribution. Commendable agreement between the illustrations of the proposed direct Hilbert spectrum and the traditional Fourier spectrum was observed. This method provides robust identifications of vibration modes embedded in vibration processes, deemed to be an efficient means to obtain valuable instantaneous information.

Sensor Fusion of GPS/INS/Baroaltimeter Using Wavelet Analysis (GPS/INS/기압고도계의 웨이블릿 센서융합 기법)

  • Kim, Seong-Pil;Kim, Eung-Tai;Seong, Kie-Jeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1232-1237
    • /
    • 2008
  • This paper introduces an application of wavelet analysis to the sensor fusion of GPS/INS/baroaltimeter. Using wavelet analysis the baro-inertial altitude is decomposed into the low frequency content and the high frequency content. The high frequency components, 'details', represent the perturbed altitude change from the long time trend. GPS altitude is also broken down by a wavelet decomposition. The low frequency components, 'approximations', of the decomposed signal address the long-term trend of altitude. It is proposed that the final altitude be determined as the sum of both the details of the baro-inertial altitude and the approximations of GPS altitude. Then the final altitude exclude long-term baro-inertial errors and short-term GPS errors. Finally, it is shown from the test results that the proposed method produces continuous and sensitive altitude successfully.