• Title/Summary/Keyword: high-level resistant

Search Result 295, Processing Time 0.021 seconds

A case of Hyper-IgE syndrome with a mutation of the STAT3 gene (STAT3유전자 돌연변이 검사로 확진된 고면역글로불린E 증후군 1례)

  • Kang, Ji-Man;Suh, Jung-Min;Kim, Ji-Hyun;Kim, Hee-Jin;Kim, Yae-Jean;Lee, Hun-Seok;Shin, Young-Kee;Ahn, Kang-Mo;Lee, Sang-Il
    • Clinical and Experimental Pediatrics
    • /
    • v.53 no.4
    • /
    • pp.592-597
    • /
    • 2010
  • Hyperimmunoglobulin E syndrome (HIES) is a rare immunodeficiency disease which is characterized by high serum IgE levels, eczema, and recurrent infections. Herein we present the case of a patient with HIES associated with STAT3 gene ($stat3$) mutation. A 16 year-old girl was admitted to our hospital due to hemoptysis caused by pneumonia with bronchiectasis. She had a history of recurrent skin and respiratory tract infections, such as pneumonia caused by MRSA (methicillin-resistant $Staphylococcus$ $aureus$) and $Pseudomonas$ $aeruginosa$. On physical examination, a broad round shaped nose, oral thrush, and chronic eczematous skin rash over her whole body were found. Laboratory data showed an elevated eosinophil count ($750/{\mu}L$) and total IgE level (5,001 U/mL). The patient's National Institutes of Health (NIH) score for HIES was 44. Direct sequencing of the STAT3 gene revealed that the patient was heterozygous for a missense mutation in the DNA binding domain of the STAT3 protein (c.1144C>T, p. Arg382Trp). HIES should be suspected in patients with recurrent infections and can be confirmed by clinical scoring and genetic analysis.

Establishment of Discriminating Concentration based Assessment for Insecticide Resistance Monitoring of Palm thrips (오이총채벌레의 약제 저항성 진단을 위한 판별농도 기반 생물검정법 확립)

  • Jeon, Sung-Wook;Park, Bueyong;Park, Se-Keun;Lee, Sang-Ku;Ryu, Hyun-Ju;Lee, Sang-Bum;Jeong, In-Hong
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.4
    • /
    • pp.557-565
    • /
    • 2017
  • For our survey of insecticidal resistance of Palm thrips (Thrips palmi Karny), we established the discriminating time (DT) and concentration (DC) of nine insecticides, and we conducted a bioassay about seven local populations via leaf-dipping methods. The discriminating times of the recommended concentration (RC) were 24 h at emamectin benzoate EC and spinetoram SC, 48 h at chlorfenapyr EC, 72 h at spinosad SC, cyantraniliprole EC, acetamiprid WP, dinotefuran WG, imidacloprid WP and thiacloprid SC after treatment. The DC estimated the concentration which showed the difference within the mortalities of these local populations. The DCs were emamectin benzoate EC $0.013mg\;L^{-1}$ (RC, $10.8mg\;L^{-1}$), spinetoram SC $0.125mg\;L^{-1}$ (RC, $25.0mg\;L^{-1}$), chlorfenapyr EC $0.25mg\;L^{-1}$ (RC, $50.0mg\;L^{-1}$), spinosad SC $0.083mg\;L^{-1}$ (RC, $50.0mg\;L^{-1}$) and cyantraniliprole EC $5.0mg\;L^{-1}$ (RC, $50.0mg\;L^{-1}$), and DCs of neonicotinoids were their RCs, that is, acetamiprid WP (RC, $40.0mg\;L^{-1}$), dinotefuran WG (RC, $20.0mg\;L^{-1}$), imidacloprid WP(RC, $50.0mg\;L^{-1}$) and thiacloprid SC (RC, $50.0mg\;L^{-1}$). From our investigation into the resistance of the local populations with DT and DC application, the neonicotinoid insecticides have shown a high resistant level for all the local populations, and the other insecticides have demonstrated low or non-resistance. In the use of neonicotinoid insecticides to control Palm thrips, one must take caution. As a result, the establishment of DT and DC in the single dose bioassay method was helpful for surveying the insecticide response dynamics and the development of an insecticide resistance management strategy.

A New Tongil-type Glutinous Rice Variety 'Hangangchal 1' of Multi-Diseases and Insect Resistance (중생 복합내병성 통일형 찰벼 품종 '한강찰 1호')

  • Song, You-Chun;Cho, Jun-Hyeon;Jung, Kuk-Hyun;Ha, Woon-Goo;Kim, Se-Ri;Kwak, Do-Yeon;Park, No-Bong;Kim, Young-Doo;Kim, Sang-Yeol;Oh, Seong-Hwan;Lim, Sang-Jong;Shin, Mun-Sik
    • Korean Journal of Breeding Science
    • /
    • v.43 no.3
    • /
    • pp.201-205
    • /
    • 2011
  • 'Hangangchal 1' is a new glutinous rice cultivar of second generation Tongil-type with a mid-maturing ecotype that developed by the rice breeding team of Yeongnam Agricultural Research Institute (YARI), RDA. in 2006. This cultivar was derived from a cross between 'Hangangchal', a Tongil-type glutinous cultivar and 'YR8208-20', a high yield potential in 1986/1987 winter season. 'Hangangchal 1' was selected by pedigree and bulk breeding methods from $F_3$ to $F_6$ populations. A promising line, YR10498-8-1-3, was selected and designated as 'Milyang 167' in 1997. The local adaptability test of 'Milyang 167' was carried out at seven locations during 3 years in 1998, 2005, and 2006. It has tolerance to lodging with good canopy architecture as 87cm of culm length. This cultivar is resistant to bacterial blight $K_1$, $K_2$, and $K_3$ race, rice stripe virus, rice dwarf virus, and leaf blast disease. The milled rice endosperm of 'Hangangchal 1' is glutinous and its whiteness was almost similar compared to 'Shinseonchalbyeo'. The yield of milled rice of 'Hangangchal 1' was average 5.97 MT/ha at ordinary cultivation of 9 kg/10a N fertilizer level in local adaptability test. This cultivar would be adaptable to the mid and southern plain of Korea.

A New Medium Maturing and High Quality Rice Variety with Lodging and Disease Resistance, 'Haeoreumi' (중생 고품질 내도복 내병성 벼 품종 '해오르미')

  • Kim, Jeong-Il;Park, No-Bong;Park, Dong-Soo;Lee, Ji-Yoon;Yeo, Un-Sang;Chang, Jae-Ki;Kang, Jung-Hun;Oh, Byeong-Geun;Kwon, Oh-Deog;Kwak, Do-Yeon;Lee, Jong-Hee;Yi, Gihwan;Kim, Chun-Song;Song, You-Cheon;Cho, Jun-Hyun;Nam, Min-Hee;Choung, Jin-Il;Shin, Mun-Sik;Jeon, Myeong-Gi;Yang, Sae-Jun;Kang, Hang-Weon;Ahn, Jin-Gon;Kim, Jae-Kyu
    • Korean Journal of Breeding Science
    • /
    • v.42 no.6
    • /
    • pp.638-644
    • /
    • 2010
  • A new rice variety 'Haeoreumi' is a japonica rice (Oryza sativa L.) with lodging tolerance, resistance to rice stripe virus (RSV) and bacterial leaf blight (BLB), and high grain quality. It was developed by the rice breeding team of Yeongdeog Substation, National Institute of Crop Science (NICS), RDA in 2008. This variety was derived from a cross between 'Milyang165' with good grain quality and lodging resistance, and 'Haepyeongbyeo' with wind tolerance in winter season of 2000/2001. A promising line, YR22375-B-B-1, selected by pedigree breeding method, was designated as the name of 'Yeongdeog46' in 2005. 'Yeongdeog46' was released as the name of 'Haeoreumi' in 2008 after the local adaptability test that was carried out at nine locations from 2006 to 2008. 'Haeoreumi' has 74 cm short culm length as and medium maturating growth duration. This variety showed resistance to $K_1,\;K_2$, and $K_3$ races of bacterial blight, and stripe virus and moderate resistant to leaf blast disease with durable resistance, and also has tolerance to unfavorable environment such as cold, dry and cold salty wind. 'Haeoreumi' has translucent and clear milled rice kernel without white core and white belly rice, and good eating quality as a result of panel test. The yield potential of 'Haeoreumi' in milled rice is about 5.58MT/ha at ordinary fertilizer level of local adaptability test. This cultivar would be adaptable to Middle plain, mid-west costal area, and east-south coastal area.

Studies on the Varietal Difference in the Physiology of Ripening in Rice with Special Reference to Raising the Percentage of Ripened Grains (수도 등숙의 품종간차이와 그 향상에 관한 연구)

  • Su-Bong Ahn
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.14
    • /
    • pp.1-40
    • /
    • 1973
  • There is a general tendency to increase nitrogen level in rice production to insure an increased yield. On the other hand, percentage of ripened grains is getting decreased with such an increased fertilizer level. Decreasing of the percentage is one of the important yield limiting factors. Especially the newly developed rice variety, 'Tongil' is characterized by a relatively low percentage of ripened grains as compared with the other leading varieties. Therefore, these studies were aimed to finding out of some measures for the improvement of ripening in rice. The studies had been carried out in the field and in the phytotron during the period of three years from 1970 to 1972 at the Crop Experiment Station in Suwon. The results obtained from the experiments could be summarized as follows: 1. The spikelet of Tongil was longer in length, more narrow in width, thinner in thickness, smaller in the volume of grains and lighter in grain weight than those of Jinheung. The specific gravity of grain was closely correlated with grain weight and the relationship with thickness, width and length was getting smaller in Jinheung. On the other hand, Tongil showed a different pattern from Jinheung. The relationship of the specific gravity with grain weight was the greatest and followed by that with the width, thickness and length, in order. 2. The distribution of grain weight selected by specific gravity was different from one variety to another. Most of grains of Jinheung were distributed over the specific gravity of 1.12 with its peak at 1.18, but many of grains of Tongil were distributed below 1.12 with its peak at 1.16. The brown/rough rice ratio was sharply declined below the specific gravity of 1.06 in Jinheung, but that of Tongil was not declined from the 1.20 to the 0.96. Accordingly, it seemed to be unfair to make the specific gravity criterion for ripened grains at 1.06 in the Tongil variety. 3. The increasing tendency of grain weight after flowering was different depending on varieties. Generally speaking, rice varieties originated from cold area showed a slow grain weight increase while Tongil was rapid except at lower temperature in late ripening stage. 4. In the late-tillered culms or weak culms, the number of spikelets was small and the percentage of ripened grains was low. Tongil produced more late-tillered culms and had a longer flowering duration especially at lower temperature, resulting in a lower percentage of ripened grains. 5. The leaf blade of Tongil was short, broad and errect, having light receiving status for photosynthesis was better. The photosynthetic activity of Tongil per unit leaf area was higher than that of Jinheung at higher temperature, but lower at lower temperature. 6. Tongil was highly resistant to lodging because of short culm length, and thick lower-internodes. Before flowering, Tongil had a relatively higher amount of sugars, phosphate, silicate, calcium, manganese and magnesium. 7. The number of spikelets of Tongil was much more than that of Jinheung. The negative correlation was observed between the number of spikelets and percentage of ripened grains in Jinheung, but no correlation was found in Tongil grown at higher temperature. Therefore, grain yield was increased with increased number of spikelets in Tongil. Anthesis was not occurred below 21$^{\circ}C$ in Tongil, so sterile spikelets were increased at lower temperature during flowering stage. 8. The root distribution of Jinheung was deeper than that of Tongil. The root activity of Tongil evaluated by $\alpha$-naphthylamine oxidation method, was higher than that of Jinheung at higher temperature, but lower at lower temperature. It is seemed to be related with discoloration of leaf blades. 9. Tongil had a better light receiving status for photosynthesis and a better productive structure with balance between photosynthesis and respiration, so it is seemed that tongil has more ideal plant type for getting of a higher grain yield as compared with Jinheung. 10. Solar radiation during the 10 days before to 30 days after flowering seemed enough for ripening in suwon, but the air temperature dropped down below 22$^{\circ}C$ beyond August 25. Therefore, it was believed that air temperature is one of ripening limiting factors in this case. 11. The optimum temperature for ripening in Jinheung was relatively lower than that of Tongil requriing more than $25^{\circ}C$. Air temperature below 21$^{\circ}C$ was one of limiting factors for ripening in Tongil. 12. It seemed that Jinheung has relatively high photosensitivity and moderate thermosensitivity, while Tongil has a low photosensitivity, high thermosensitivity and longer basic vegetative phase. 13. Under a condition of higher nitrogen application at late growing stage, the grain yield of Jinheung was increased with improvement of percentage of ripened grains, while grain yield of Tongil decreased due to decreasing the number of spikelets although photosynthetic activity after flowering was. increased. 14. The grain yield of Jinheung was decreased slightly in the late transplanting culture since its photosynthetic activity was relatively high at lower temperature, but that of Tonil was decreased due to its inactive photosynthetic activity at lower temperature. The highest yield of Tongil was obtained in the early transplanting culture. 15. Tongil was adapted to a higher fertilizer and dense transplanting, and the percentage of ripened grains was improved by shortening of the flowering duration with increased number of seedlings per hill. 16. The percentage of vigorous tillers was increased with a denser transplanting and increasing in number of seedlings per hill. 17. The possibility to improve percentage of ripened grains was shown with phosphate application at lower temperature. The above mentioned results are again summarized below. The Japonica type leading varieties should be flowered before August 20 to insure a satisfactory ripening of grains. Nitrogen applied should not be more than 7.5kg/10a as the basal-dressing and the remained nitrogen should be applied at the later growing stage to increase their photosynthetic activity. The morphological and physiological characteristics of Tongil, a semi-dwarf, Indica $\times$ Japonica hybrid variety, are very different from those of other leading rice varieties, requring changes in seed selection by specific gravity method, in milling and in the cultural practices. Considering the peculiar distribution of grains selected by the method and the brown/rough rice ratio, the specific gravity criterion for seed selection should be changed from the currently employed 1.06 to about 0.96 for Tongil. In milling process, it would be advisable to bear in mind the specific traits of Tongil grain appearance. Tongil is a variety with many weak tillers and under lower temperature condition flowering is delayed. Such characteristics result in inactivation of roots and leaf blades which affects substantially lowering of the percentage of ripened grains due to increased unfertilized spikelets. In addition, Tongil is adapted well to higher nitrogen application. Therefore, it would be recommended to transplant Tongil variety earlier in season under the condition of higer nitrogen, phosphate and silicate. A dense planting-space with three vigorous seedlings per hill should be practiced in this case. In order to manifest fully the capability of Tongil, several aspects such as the varietal improvement, culural practices and milling process should be more intensively considered in the future.he future.

  • PDF