• Title/Summary/Keyword: high-intensity wind

Search Result 133, Processing Time 0.024 seconds

Characterization of open and suburban boundary layer wind turbulence in 2008 Hurricane Ike

  • Jung, S.;Masters, F.J.
    • Wind and Structures
    • /
    • v.17 no.2
    • /
    • pp.135-162
    • /
    • 2013
  • The majority of experiments to characterize the turbulence in the surface layer have been performed in flat, open expanses. In order to characterize the turbulence in built-up terrain, two mobile towers were deployed during Hurricane Ike (2008) in close proximity, but downwind of different terrain conditions: suburban and open. Due to the significant non-stationarity of the data primarily caused by changes in wind direction, empirical mode decomposition was employed to de-trend the signal. Analysis of the data showed that the along-wind mean turbulence intensity of the suburban terrain was 37% higher than that of the open terrain. For the mean vertical turbulence intensity, the increase for the suburban terrain was as high as 74%, which may have important implications in structural engineering. The gust factor of the suburban terrain was also 16% higher than that of the open terrain. Compared to non-hurricane spectral models, the obtained spectra showed significantly higher energy in low frequencies especially for the open terrain.

Bora wind characteristics for engineering applications

  • Lepri, Petra;Vecenaj, Zeljko;Kozmar, Hrvoje;Grisogono, Branko
    • Wind and Structures
    • /
    • v.24 no.6
    • /
    • pp.579-611
    • /
    • 2017
  • Bora is a strong, usually dry temporally and spatially transient wind that is common at the eastern Adriatic Coast and many other dynamically similar regions around the world. One of the Bora main characteristics is its gustiness, when wind velocities can reach up to five times the mean velocity. Bora often creates significant problems to traffic, structures and human life in general. In this study, Bora velocity and near-ground turbulence are studied using the results of three-level high-frequency Bora field measurements carried out on a meteorological tower near the city of Split, Croatia. These measurements are analyzed for a period from April 2010 until June 2011. This rather long period allows for making quite robust and reliable conclusions. The focus is on mean Bora velocity, turbulence intensity, Reynolds shear stress and turbulence length scale profiles, as well as on Bora velocity power spectra and thermal stratification. The results are compared with commonly used empirical laws and recommendations provided in the ESDU 85020 wind engineering standard to question its applicability to Bora. The obtained results report some interesting findings. In particular, the empirical power- and logarithmic laws proved to fit mean Bora velocity profiles well. With decreasing Bora velocity there is an increase in the power-law exponent and aerodynamic surface roughness length, and simultaneously a decrease in friction velocity. This indicates an urban-like velocity profile for smaller wind velocities and a rural-like velocity profile for larger wind velocities. Bora proved to be near-neutral thermally stratified. Turbulence intensity and lateral component of turbulence length scales agree well with ESDU 85020 for this particular terrain type. Longitudinal and vertical turbulence length scales, Reynolds shear stress and velocity power spectra differ considerably from ESDU 85020. This may have significant implications on calculations of Bora wind loads on structures.

Numerical characterization of downburst wind field at WindEEE dome

  • Ibrahim, Ibrahim;Aboshosha, Haitham;El Damatty, Ashraf
    • Wind and Structures
    • /
    • v.30 no.3
    • /
    • pp.231-243
    • /
    • 2020
  • Downbursts are acknowledged for being a major loading hazard for horizontally-extending structures like transmission line systems. With these structures being inherently flexible, it is important to characterize the turbulence associated with the wind flow of downburst events being essential to quantify dynamic excitations on structures. Accordingly, the current study numerically characterizes the downburst wind field of open terrain simulated at the Wind Engineering, Energy and Environment (WindEEE) dome testing facility at The University of Western Ontario in Canada through a high-resolution large eddy simulation (LES). The study validates the numerical simulation considering both the mean and the turbulent components of the flow. It then provides a detailed visual description of the flow at WindEEE through the capabilities enabled by LES to identify the key factors affecting the flow. The study also presents the spatial distribution of turbulence intensities and length scales computed from the numerical model and compares them with previous values reported in the literature. The comparison shows the ability of the downburst simulated at WindEEE to reproduce turbulence characteristics similar to those reported from field measurements. The study also indicates that downburst turbulence is well-correlated circumferentially which imposes high correlated loads on horizontally-distributed structures such as transmission lines.

Validity of Wind Generation in Consideration of Topographical Characteristics of Korea (지형에 따른 예상풍력발전단지에 관한 고찰)

  • Moon, Chae-Joo;Jung, Kwen-Sung;Cheang, Eui-Heang;Park, Gui-Yeol
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.81-84
    • /
    • 2008
  • This paper discussed the validity of wind force power generation in consideration of the topographical characteristics of Korea. In order to estimate the exact generation of wind power plants, we analyzed and compared wind resources in mountain areas and plain areas by introducing not only wind velocity, the most important variable, but also wind distribution and wind standard deviation that can reflect the influence of landform sufficiently. According to the results of this study, generation was higher at wind power plants installed in southwestern coastal areas where wind velocity was low than at those installed in mountain areas in Gangwondo where wind velocity was high. This suggests that the shape parameter of wind distribution is low due to the characteristics of mountain areas. and the standard deviation of wind velocity is large due to the effect of mountain winds, and therefore, actual generation is low in mountain areas although wind velocity is high.

  • PDF

Feasibility study of wind power generation considering the topographical characteristics of Korea (우리나라 지형특성을 고려한 풍력발전 타당성 연구)

  • Moon, Chae-Joo;Cheang, Eui-Heang;Shim, Kwan-Shik;Jung, Kwen-Sung;Chang, Young-Hak
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.6
    • /
    • pp.24-32
    • /
    • 2008
  • This paper discussed the Feasibility study of wind power generation considering the topographical characteristics of Korea. In order to estimate the exact generation of wind power plants, we analyzed and compared wind resources in mountain areas and plain areas by introducing not only wind speed, the most important variable, but also wind distribution and wind standard deviation that can reflect the influence of landform sufficiently. According to the results of this study, generation was almost the same at wind power plants installed in southwestern coastal areas where wind speed was low as at those installed in mountain areas in Gangwondo where wind speed was high. This demonstrates that the shape parameter of wind distribution is low due to the characteristics of mountain areas, and the standard deviation of wind speed is large due to the effect of mountain winds, therefore, actual generation compared to southwestern coastal areas is almost similar in mountain areas even though wind speed is high.

Field monitoring of boundary layer wind characteristics in urban area

  • Li, Q.S.;Zhi, Lunhai;Hu, Fei
    • Wind and Structures
    • /
    • v.12 no.6
    • /
    • pp.553-574
    • /
    • 2009
  • This paper presents statistical analysis results of wind speed and atmospheric turbulence data measured from more than 30 anemometers installed at 15 different height levels on 325 m high Beijing Meteorological Tower and is primarily intended to provide useful information on boundary layer wind characteristics for wind-resistant design of tall buildings and high-rise structures. Profiles of mean wind speed are presented based on the field measurements and are compared with empirical models' predictions. Relevant parameters of atmospheric boundary layer at urban terrain are determined from the measured wind speed profiles. Furthermore, wind velocity data in longitudinal, lateral and vertical directions, which were recorded from an ultrasonic anemometer during windstorms, are analyzed and discussed. Atmospheric turbulence information such as turbulence intensity, gust factor, turbulence integral length scale and power spectral densities of the three-dimensional fluctuating wind velocity are presented and used to evaluate the adequacy of existing theoretical and empirical models. The objective of this study is to investigate the profiles of mean wind speed and atmospheric turbulence characteristics over a typical urban area.

Sensitivity Test of the Numerical Simulation with High Resolution Topography and Landuse over Seoul Metropolitan and Surrounding Areas (수도권 지역에서의 고해상도 지형과 지면피복자료에 따른 수치모의 민감도 실험)

  • Park, Sung-Hwa;Jee, Joon-Bum;Yi, Chaeyeon
    • Atmosphere
    • /
    • v.25 no.2
    • /
    • pp.309-322
    • /
    • 2015
  • The objective of this study is to evaluate the impact of the high resolution topographies and landuses data on simulated meteorological variables (wind speed at 10 m, temperature at 2 m and relative humidity at 2 m) in WRF. We compare the results with WRF simulation using each resolution of the topographies and landuses, and with 37 AWS observation data on the Seoul metropolitan regions. According to results of using high-resolution topography, WRF model gives better topographical expression over domain. And we can separate more detail (Low intensity residential, high intensity residential, industrial or commercial) using high resolution landuses data. The result shows that simulated temperature and wind speed are generally higher than AWS observation data. However, simulation trend with temperature, wind speed, and relative humidity are similar to observation data. The reason for that is that the high precipitation event occurred in CASE 1 and 2. Temperature have correlation of 0.43~0.47 and standard deviation of $2.12{\sim}2.28^{\circ}C$ in CASE 1, while correlation of more than 0.8 and standard deviation of $3.05{\sim}3.18m\;s^{-1}$ in CASE 2. In case of wind speed, correlation have lower than 0.5 and Standard Deviation of $1.88{\sim}2.34m\;s^{-1}$ in CASE 1 and 2. In statistical analysis shows that using highest resolution (U01) results are more close to the AWS observation data. It can be concluded that the topographies and landuses are important factor that affect model simulation. However, the tendency to always use high resolution topographies and landuses data appears to be unjustified, and optimal solution depends on the combination of scale effect and mechanisms of dynamic models.

Full-scale investigation of wind-induced vibrations of a mast-arm traffic signal structure

  • Riedman, Michelle;Sinh, Hung Nguyen;Letchford, Christopher;O'Rourke, Michael
    • Wind and Structures
    • /
    • v.20 no.3
    • /
    • pp.405-422
    • /
    • 2015
  • In previous model- and full-scale studies, high-amplitude vertical vibrations of mast-arm traffic signal structures have been shown to be due to vortex shedding, a phenomenon in which alternatingly shed, low-pressure vortices induce oscillating forces onto the mast-arm causing a cross-wind response. When the frequency of vortices being shed from the mast-arm corresponds to the natural frequency of the structure, a resonant condition is created causing long-lasting, high-amplitude vibrations which may lead to the fatigue failure of these structures. Turbulence in the approach flow is known to affect the cohesiveness of vortex shedding. Results from this full-scale investigation indicate that the surrounding terrain conditions, which affect the turbulence intensity of the wind, greatly influence the likelihood of occurrence of long-lasting, high-amplitude vibrations and also impact whether reduced service life due to fatigue is likely to be of concern.

Aeroelastic model test of a 610 m-high TV tower with complex shape and structure

  • Ding, Quanshun;Zhu, Ledong
    • Wind and Structures
    • /
    • v.25 no.4
    • /
    • pp.361-379
    • /
    • 2017
  • In view of the importance of the wind-structure interaction for tall and slender structures, an aeroelastic model test of the 610m-high TV tower with a complex and unique structural configuration and appearance carried out successfully. The assembled aeroelastic model of the TV tower with complex shape and structure was designed and made to ensure the similarities of the major natural frequencies and the corresponding mode shapes. The simulation of the atmospheric boundary layer with higher turbulent intensity is presented. Since the displacement and acceleration responses at several measurement sections were directly measured in the wind tunnel test, a multi-mode approach was presented to indirectly estimate the displacement and acceleration responses at arbitrary structural floors based on the measured ones. It can be seen that it is remarkable for the displacement and acceleration responses of the TV tower in the two horizontal directions under wind loads and is small for the dynamic response of the torsional displacement and acceleration.

Behaviour of guyed transmission line structures under downburst wind loading

  • Shehata, A.Y.;El Damatty, A.A.
    • Wind and Structures
    • /
    • v.10 no.3
    • /
    • pp.249-268
    • /
    • 2007
  • Past experience indicates that the majority of failures of electrical transmission tower structures occurred during high intensity wind events, such as downbursts. The wind load distribution associated with these localized events is different than the boundary layer wind profile that is typically used in the design of structures. To the best of the authors' knowledge, this study represents the first comprehensive investigation that assesses the effect of varying the downburst parameters on the structural performance of a transmission line structure. The study focuses on a guyed tower structure and is conducted numerically using, as a case study, one of the towers that failed in Manitoba, Canada, during a downburst event in 1996. The study provides an insight about the spatial and time variation of the downburst wind field. It also assesses the variation of the tower members' internal forces with the downburst parameters. Finally, the structural behaviour of the tower under critical downburst configurations is described and is compared to that resulting from the boundary layer normal wind load conditions.