• 제목/요약/키워드: high-frequency anemometers

검색결과 3건 처리시간 0.021초

A wireless high-frequency anemometer instrumentation system for field measurements

  • Huang, Guoqing;Peng, Liuliu;Su, Yanwen;Liao, Haili;Li, Mingshui
    • Wind and Structures
    • /
    • 제20권6호
    • /
    • pp.739-749
    • /
    • 2015
  • Field measurement of wind characteristics is of great significance for the wind engineering community. High-frequency anemometers such as ultrasonic anemometers are widely used to obtain the high-frequency fluctuating wind speed time history. However, conventional instrumentation systems may suffer from low efficiency, non-real time transmission and higher maintenance cost, and thus are not very appropriate in the field measurement of strong winds in remote areas such as mountain valleys. In order to improve the field measurement performance in those remote areas, a wireless high-frequency anemometer instrumentation system for field measurement has been developed. In this paper, the architecture of the proposed instrumentation system, and measured data transmission and treatment will be presented firstly. Then a comparison among existing instrumentation systems and the proposed one is made. It shows that the newly-developed system has considerable advantages. Furthermore, the application of this system to the bridge site located in the mountain valley is discussed. Finally, typical samples of measured data from this area are presented. It can be expected that the proposed system has a great application potential in the wind field measurement for remote areas such as the mountainous or island or coastal area, and hazardous structures such as ultra-voltage transmission tower, due to its real-time transmission, low cost and no manual collection of data and convenience.

Wind turbulence characteristics over an industrial landscape in neutral atmospheric conditions

  • Petr Michalek;Stanislav Pospisil;Pavel Sedlak
    • Wind and Structures
    • /
    • 제39권2호
    • /
    • pp.111-123
    • /
    • 2024
  • The atmospheric turbulence characteristics measured at a meteorological station in northwest part of the Czech Republic are presented for selected time periods in the year 2017. The terrain of this region is influenced by surface coal mining and the related industry. The datasets used in this study were measured using four ultrasonic anemometers installed on an 80 m high meteorological mast at heights of 20, 40, 60 and 80 m, respective. From the primary high-frequency datasets, time intervals in order of hours were selected and integral turbulence characteristics (ITCs), turbulence intensities and turbulence spectra were analyzed. The time intervals were selected with respect to atmospheric stability parameter, known as Obukhov number. We concentrated on the days with higher wind velocity and neutral atmospheric stratification. The wind characteristics investigated in this study include the wind speed, wind direction and its histograms, turbulence intensity, friction velocity and wind power spectra. The ITCs and spectral characteristics were compared with the theoretical models and values from the literature. The resulting ITCs showed the values for urban locations similar to those found in other studies and can be used in practical design. The computed turbulence spectra followed the shape of theoretical spectra of turbulence for both horizontal and vertical velocity components. The computed integral length scales have shown to be unsuitable for further use due to their highly scattered values.

Experimental and Simulation Results for Sliding Mode Dynamic Wind Turbine Control using a DC Chopper

  • Riahy G.;Freere P.;Holmes D.G
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.650-655
    • /
    • 2001
  • Wind speeds can vary rapidly and wind turbines cannot easily follow these variations because of their inertia and aerodynamic characteristics. For maximum energy extraction. the turbine blades should operate at their optimum tip speed ratio, but with rapid changes in wind speed. this is usually not possible. To improve the energy extraction from turbulent wind, it is necessary to establish an effective measure of the high frequency component of the wind. and then to use this measure to optimise the operation of the turbine controller for maximum energy extraction. This paper presents an approach for combining readings from three anemometers into a composite wind speed measurement. and using this signal to control the operation of a permanent magnet generator to achieve maximum energy extraction. The method combines simulation and experimental investigations into a heuristic algorithm. and demonstrates its effectiveness with field trials.

  • PDF