• Title/Summary/Keyword: high-field-strength imaging

Search Result 24, Processing Time 0.025 seconds

Quantitative and Qualitative Evaluation of Brain Diffusion Weighted Magnetic Resonance Imaging: Comparision with 1.5 T and 3.0 T Units (뇌 확산강조 자기공명영상에 대한 정량적, 성적 평가: 1.5 T와 3.0 T 기기 비교)

  • Goo, Eun-Hoe;Dong, Kyung-Rae
    • Journal of Radiation Industry
    • /
    • v.10 no.4
    • /
    • pp.227-230
    • /
    • 2016
  • DWI of biological effects are independent of magnetic field strength in various regions. High field strength, however, does affect the signal to noise ratio (SNR) and artifacts of diffusion weighted imaging (DWI) images, which ultimately will influence the quantitative of diffusion imaging. In this study, the effects of field strength on DWI are reviewed. The effects of the diseases also are discussed. Comparing DWI in cerebellum, WM, GM, Hyperacute region measurements both as a function of field strength (1.5T and 3.0T). Overall, the SNR of the DWI roughly doubled going from 1.5 T to 3.0 T. In summary, DWI studies at 3.0 T is provided significantly improved DWI measurements relative to studies at 1.5T.

Nanoparticle Contrast in Magneto-Motive Optical Doppler Tomography

  • Kim, Jee-Hyun;Oh, Jung-Hwan
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.99-104
    • /
    • 2006
  • We introduce a novel contrast mechanism for imaging superparamagnetic iron oxide (SPIO) nanoparticles (average diameter ${\sim}100nm$) using magneto-motive optical Doppler tomography (MM-ODT), which combines an externally applied temporally oscillating high-strength magnetic field with ODT to detect the nanoparticles flowing through a glass capillary tube. A solenoid cone-shaped ferrite core extensively increased the magnetic field strength ($B_{max}=1\;T,\;{\Delta}|B|^2=220T^2/m$) at the tip of the core and also focused the magnetic force on targeted samples. Nanoparticle contrast was demonstrated in a capillary tube filled with the SPIO solution by imaging the Doppler frequency shift which was observed independent of the flow rate and direction. Results suggest that MM-ODT may be a promising technique to enhance SPIO nanoparticle contrast for imaging fluid flow.

Fundamental Background for 3T MRI/MRS

  • Choe, Bo-Young
    • Proceedings of the KSMRM Conference
    • /
    • 2002.11a
    • /
    • pp.47-49
    • /
    • 2002
  • At present, the trend of magnetic field strength in MRI system is dramatically changing. In early 70, the only low field (<0.5T) was developed. It was technically difficult to develop the high field system. At that time, people believed that the fine MR imaging could not be obtained in the high field MR system due to the magnetic susceptibility effect. However, 1.5T system was evolved at the end of 80, and used for clinical usage. Thus, it was proved that the signal to noise ratio (SNR) could be greatly contribute to enhance the image quality. And, the results of functional MRI and MR spectroscopy could be improved in the higher field MR system. So, 8T system was eventually developed in Ohio State University Hospital at the end of 90. Therefore, there is no doubt that the system with the ultra high magnetic field strength will be developed near future in 21 century.

  • PDF

Comparison and Optimization of Parallel-Transmission RF Coil Elements for 3.0 T Body MRI (3.0 T MRI를 위한 Parallel-Transmission RF 코일 구조의 비교와 최적화)

  • Oh, Chang-Hyun;Lee, Heung-K.;Ryu, Yeun-Chul;Hyun, Jung-Ho;Choi, Hyuk-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.61-63
    • /
    • 2007
  • In high field (> 3 T) MR imaging, the magnetic field inhomogeneity in the target object increases due to the nonuniform electro-magnetic characteristics and relatively high Larmor frequency. Especially in the body imaging, the effect causes more serious problems resulting in locally high SAR(Specific Absorption Ratio). In this paper, we propose an optimized parallel-transmission RF coil element structure and show the utility of the coil by FDTD simulations to overcome the unwanted effects. Three types of TX coil elements are tested to maximize the efficiency and their driving patterns(amplitude and phase) optimized to have adequate field homogeneity, proper SAR level, and sufficient field strength. For the proposed coil element of 25 cm ${\times}$ 8 cm loop structure with 12 channels for a 3.0 T body coil, the 73% field non-uniformity without optimization was reduced to about 26% after optimization of driving patterns. The experimental as well as simulation results show the utility of the proposed parallel driving scheme is clinically useful for (ultra) high field MRI.

  • PDF

A study on the reproducibility of hippocampal volumes measured using magnetic resonance images of different magnetic field strengths and slice orientations (자장 세기와 스캔 방향이 다른 자기공명영상에서 측정된 해마 체적의 재현성 연구)

  • Choi, Yu Yong;Lee, Dong Hee;Lee, Sang Woong;Lee, Kun Ho;Kwon, Goo Rak
    • Smart Media Journal
    • /
    • v.5 no.1
    • /
    • pp.44-48
    • /
    • 2016
  • In a longitudinal neuroimaging study, the upgrades of a magnetic resonance imaging (MRI) scanner due to outdated hardwares and softwares make it difficult to maintain the same MRI conditions in the long-term research period. Particularly, high field MRI systems such 3T scanners become popular in recent years. However, it is still unclear whether an integrated analysis of 3T and 1.5T images is possible without consideration of the field strength. In this study, we evaluated the reproducibility of hippocampal volumes between brain images with different field strengths and slice orientations. 296 participants underwent both 3T and 1.5T MRI and both sagittal and axial scans for high resolution brain images, and their hippocampal volumes were measured using Freesurfer, a well-known software for neuroimaging analysis. Paired t-tests showed that the hippocampal volumes were significantly different between the image types. These results suggest that it is necessary to develop data analysis techniques for integrating diverse types of MRI images.

Analysis of Quantization Noise in Magnetic Resonance Imaging Systems (자기공명영상 시스템의 양자화잡음 분석)

  • Ahn C.B.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.8 no.1
    • /
    • pp.42-49
    • /
    • 2004
  • Purpose : The quantization noise in magnetic resonance imaging (MRI) systems is analyzed. The signal-to-quantization noise ratio (SQNR) in the reconstructed image is derived from the level of quantization in the signal in spatial frequency domain. Based on the derived formula, the SQNRs in various main magnetic fields with different receiver systems are evaluated. From the evaluation, the quantization noise could be a major noise source determining overall system signal-to-noise ratio (SNR) in high field MRI system. A few methods to reduce the quantization noise are suggested. Materials and methods : In Fourier imaging methods, spin density distribution is encoded by phase and frequency encoding gradients in such a way that it becomes a distribution in the spatial frequency domain. Thus the quantization noise in the spatial frequency domain is expressed in terms of the SQNR in the reconstructed image. The validity of the derived formula is confirmed by experiments and computer simulation. Results : Using the derived formula, the SQNRs in various main magnetic fields with various receiver systems are evaluated. Since the quantization noise is proportional to the signal amplitude, yet it cannot be reduced by simple signal averaging, it could be a serious problem in high field imaging. In many receiver systems employing analog-to-digital converters (ADC) of 16 bits/sample, the quantization noise could be a major noise source limiting overall system SNR, especially in a high field imaging. Conclusion : The field strength of MRI system keeps going higher for functional imaging and spectroscopy. In high field MRI system, signal amplitude becomes larger with more susceptibility effect and wider spectral separation. Since the quantization noise is proportional to the signal amplitude, if the conversion bits of the ADCs in the receiver system are not large enough, the increase of signal amplitude may not be fully utilized for the SNR enhancement due to the increase of the quantization noise. Evaluation of the SQNR for various systems using the formula shows that the quantization noise could be a major noise source limiting overall system SNR, especially in three dimensional imaging in a high field imaging. Oversampling and off-center sampling would be an alternative solution to reduce the quantization noise without replacement of the receiver system.

  • PDF

Study on Grain Boundaries in Single-layer Graphene Using Ultrahigh Resolution TEM

  • Lee, Zong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.107-107
    • /
    • 2012
  • Recently, large-area synthesis of high-quality but polycrystalline graphene has been advanced as a scalable route to applications including electronic devices. The presence of grain boundaries (GBs) may be detrimental on some electronic, thermal, and mechanical properties of graphene, including reduced electronic mobility, lower thermal conductivity, and reduced ultimate mechanical strength, yet on the other hand, GBs might be beneficially exploited via controlled GB engineering. The study of graphene grains and their boundary is therefore critical for a complete understanding of this interesting material and for enabling diverse applications. I present that scanning electron diffraction in STEM mode makes possible fast and direct identification of GBs. We also demonstrate that dark field TEM imaging techniques allow facile GB imaging for high-angle tilt GBs in graphene. GB mapping is systematically carried out on large-area graphene samples via these complementary techniques. The study of the detailed atomic structure at a GB in suspended graphene uses aberration-corrected atomic resolution TEM at a low kV.

  • PDF

Chromospheric Sunspot Oscillations in H-alpha and Ca II 8542A

  • Maurya, Ram Ajor
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.61.2-61.2
    • /
    • 2013
  • We study chromospheric oscillations including umbral flashes and running penumbral waves in a sunspot using scanning spectroscopy in H-alpha and Ca II 8542A, with the Fast Imaging Solar Spectrograph (FISS) at the 1.6 meter New Solar Telescope at Big Bear Solar Observatory. A bisector method is applied to spectral observations to construct chromospheric Doppler velocity maps. Temporal sequence analysis of these shows enhanced high-frequency oscillations inside the sunspot umbra in both lines. Their peak frequency gradually decreases outward from the umbra. The oscillation power is found to be associated with magnetic-field strength and inclination, with different relationships in different frequency bands.

  • PDF

Two-dimensional imaging of shear wave velocity in the soil site using HWAW method (HWAW방법을 사용한 지반의 전단파 속도 2-D 영상화)

  • Park, Hyung-Choon;Kim, Dong-Soo;Kim, Jong-Tea;Park, Hyun-Jun;Bang, Eun-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.7-13
    • /
    • 2008
  • To obtain a shear-wave velocity profile in geotechnical practice, various seismic investigation methods which have their own strength and weakness are being frequently used. Generally, geotechnical site have lateral variation of the properties, so it is needed to determine 2-dimensional shear wave velocity imaging of the site. In this study, harmonic wavelet analysis of wave (HWAW) method is applied to determination of 2-D $V_s$ imaging. HWAW method which is based on time-frequency analysis using harmonic wavelet transform have been developed to determine phase and group velocities of waves. HWAW method uses the signal portion of the maximum local signal/noise ratio to evaluate the phase velocity to minimize the effects of noise. HWAW method determine detailed local $V_s$ profile because one experimental setup which consists of one pair of receivers with spacing of 1~3m is used to determine the dispersion curve of the whole depth. So, 2-D Vs imaging with relatively high resolution can be determined through a series of HWAW test. In order to estimate the applicability of HWAW method, field tests were performed in 4 sites. Through field applications and comparison with other test results, the good accuracy and applicability of the proposed method were verified.

  • PDF

Overview of new developments in satellite geophysics in 'Earth system' research

  • Moon Wooil M.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.3-17
    • /
    • 2004
  • Space-borne Earth observation technique is one of the most cost effective and rapidly advancing Earth science research tools today and the potential field and micro-wave radar applications have been leading the discipline. The traditional optical imaging systems including the well known Landsat, NOAA - AVHRR, SPOT, and IKONOS have steadily improved spatial imaging resolution but increasing cloud covers have the major deterrent. The new Earth observation satellites ENVISAT (launched on March 1 2002, specifically for Earth environment observation), ALOS (planned for launching in 2004 - 2005 period and ALOS stands for Advanced Land Observation Satellite), and RADARSAT-II (planned for launching in 2005) all have synthetic aperture radar (SAR) onboard, which all have partial or fully polarimetric imaging capabilities. These new types of polarimetric imaging radars with repeat orbit interferometric capabilities are opening up completely new possibilities in Earth system science research, in addition to the radar altimeter and scatterometer. The main advantage of a SAR system is the all weather imaging capability without Sun light and the newly developed interferometric capabilities, utilizing the phase information in SAR data further extends the observation capabilities of directional surface covers and neotectonic surface displacements. In addition, if one can utilize the newly available multiple frequency polarimetric information, the new generation of space-borne SAR systems is the future research tool for Earth observation and global environmental change monitoring. The potential field strength decreases as a function of the inverse square of the distance between the source and the observation point and geophysicists have traditionally been reluctant to make the potential field observation from any space-borne platforms. However, there have recently been a number of potential field missions such as ASTRID-2, Orsted, CHAMP, GRACE, GOCE. Of course these satellite sensors are most effective for low spatial resolution applications. For similar objects, AMPERE and NPOESS are being planned by the United States and France. The Earth science disciplines which utilize space-borne platforms most are the astronomy and atmospheric science. However in this talk we will focus our discussion on the solid Earth and physical oceanographic applications. The geodynamic applications actively being investigated from various space-borne platforms geological mapping, earthquake and volcano .elated tectonic deformation, generation of p.ecise digital elevation model (DEM), development of multi-temporal differential cross-track SAR interferometry, sea surface wind measurement, tidal flat geomorphology, sea surface wave dynamics, internal waves and high latitude cryogenics including sea ice problems.

  • PDF