무마커 증강현실 시스템은 실내나 옥외 환경에서 자연 물체를 인식하고 매칭하는 기능이 필수적이다. 본 논문에서는 비주얼 서술자와 코드북을 사용하여 특징을 추출하고 자연 물체를 인식하는 기법을 제안한다. 증강현실 응용은 동작 속도와 실시간 성능에 민감하기 때문에, 본 연구에서는 멀티 클래스의 자연 물체 인식에 초점을 두었으며 분류와 특징 추출 시간을 줄이는 것을 포함한다. 훈련과 테스트 과정에서 자연 물체로부터 특징을 추출하기 위해 SIFT와 SURF을 각각 사용하고 그들의 성능을 비교한다. 또한, 클러스터링 알고리즘을 이용하여 다차원의 특징 벡터들로부터 비주얼 코드북을 생성하고 나이브 베이즈 분류기를 이용해 물체를 인식한다.
In computer graphics since objects atre constructed by lines and curves, the high-speed curve generator is indispensible for computer aided design and simulatation. Since the functions of graphic generation can be represented as a series of matrix operations, in this paper, two kind of the high-speed Bezier curve generator that uses matrix equation and a recursive relation for Bezier polynomials are designed. And B-spline curve generator is designed using interdependence of B-spline blending functions. As the result of the comparison of designed curve generator and reference [5], [6] in the operation time and number of operators, the curve generator with 1-dimensional systolic array processor for matrix vector operation that uses matrix equation for Bezier curve is more effective.
Journal of information and communication convergence engineering
/
제16권2호
/
pp.99-105
/
2018
k-Nearest neighbor join (k-NN Join) is a computationally intensive algorithm that is designed to find k-nearest neighbors from a dataset S for every object in another dataset R. Most related studies on k-NN Join are based on single-computer operations. As the data dimensions and data volume increase, running the k-NN Join algorithm on a single computer cannot generate results quickly. To solve this scalability problem, we introduce the locality-sensitive hashing (LSH) k-NN Join algorithm implemented in Spark, an approach for high-dimensional big data. LSH is used to map similar data onto the same bucket, which can reduce the data search scope. In order to achieve parallel implementation of the algorithm on multiple computers, the Spark framework is used to accelerate the computation of distances between objects in a cluster. Results show that our proposed approach is fast and accurate for high-dimensional and big data.
다차원 척도법(multidimensional scaling)은 고차원의 데이터를 낮은 차원의 공간에 매핑(mapping)하여 데이터 간의 유사성을 표현하는 방법이다. 이는 주로 자질 선정 및 데이터를 시각화하는 데 이용된다. 그러한 다차원 척도법 중, 전통 다차원 척도법(classical multidimensional scaling)은 긴 수행 시간과 큰 공간을 필요로 하기 때문에 객체의 수가 많은 경우에 대해 적용하기 어렵다. 이는 유클리드 거리(Euclidean distance)에 기반한 $n{\times}n$ 상이도 행렬(dissimilarity matrix)에 대해 고유쌍 문제(eigenpair problem)를 풀어야 하기 때문이다(단, n은 객체의 개수). 따라서, n이 커질수록 수행 시간이 길어지며, 메모리 사용량 증가로 인해 적용할 수 있는 데이터 크기에 한계가 있다. 본 논문에서는 이러한 문제를 완화하기 위해 GPGPU 기술 중 하나인 CUDA와 분할-정복(divide-and-conquer)기법을 활용한 효율적인 다차원 척도법을 제안하며, 다양한 실험을 통해 제안하는 기법이 객체의 개수가 많은 경우에 매우 효율적일 수 있음을 보인다.
In this study, a novel method for dimension measurement of large-scale moving objects using stereo camera with 2-degree of freedom (2-DOF) mechanism is presented. The proposed method utilizes both the advantages of stereo vision technique and the enlarged visibility range of camera due to 2-DOF rotary mechanism in measuring large-scale moving objects. The measurement system employs a stereo camera combined with a 2-DOF rotary mechanism that allows capturing separate corners of the measured object. The measuring algorithm consists of two main stages. First, three-dimensional (3-D) positions of the corners of the measured object are determined based on stereo vision algorithms. Then, using the rotary angles of the 2-DOF mechanism the dimensions of the measured object are calculated via coordinate transformation. The proposed system can measure the dimensions of moving objects with relatively slow and steady speed. We showed that the proposed system guarantees high measuring accuracy with some experiments.
With the ability to learn rules from training data, the machine learning model can classify unknown objects. At the same time, the dimension of hyperspectral data is usually large, which may cause an over-fitting problem. In this research, an identification methodology of tea diseases was proposed based on spectral reflectance and machine learning, including the feature selector based on the decision tree and the tea disease recognizer based on random forest. The proposed identification methodology was evaluated through experiments. The experimental results showed that the recall rate and the F1 score were significantly improved by the proposed methodology in the identification accuracy of tea disease, with average values of 15%, 7%, and 11%, respectively. Therefore, the proposed identification methodology could make relatively better feature selection and learn from high dimensional data so as to achieve the non-destructive and efficient identification of different tea diseases. This research provides a new idea for the feature selection of high dimensional data and the non-destructive identification of crop diseases.
Errors resulting from magnification variations of a optical system are largely generated in three-dimensional shape measurements based on depth-from-focus. In the case of measuring the surface morphology of tiny objects based on DFF, images are acquired with a very small interval so that magnification changes can be minimized. However, the magnification variations are actually existed in the acquired images and so focus measures are wrongly or ambiguously extracted. In this paper, a methodology with linear magnification calibrations, based on DFF, is proposed to make more accurate measurement in surface morphology with high depth discontinuity, compared with previous ones. Several experiments show that the proposed method outperforms existing ones without magnification calibrations.
When a shock wave is discharged from the exit of a duct, complicated flow is formed near the duct exit. The flow field is much more complicated under the ground effects or any other objects near the exit of a duct, such as the circumstance near the exit of the high-speed railway tunnel. The resulting flow is essentially three-dimensional unsteady with the effects of strong compressibility. In the current study, three-dimensional flow fields of the weak shock wave which is discharged from the exit of a duct are numerically investigated using a CFD method. Computations are performed for the weak shock wave in the range below 1.5. The results obtained show that the directivity and magnitude of the weak shock discharged strongly depend upon the Mach number of initial shock wave and are significantly influenced by the ground effects.
Nowadays, Three dimensional printing (3DP) technique that is one of solid freeform fabrication (SFF) technology has been notable issue, and has been applied by various fields. The SFF system can fabricate three dimensional objects of solid freeform with high speed and low cost using ink jet printing technology. In this research, a SFF system to analyze 3DP process technology is developed. We applied sliding mode control with sliding perturbation observer (SMCSPO) algorithm and minimized position error to the developed SFF system. We analyzed and optimized process variables such as jetted volume, layer thickness, powder bed and so on experimentally. Also. the dimensional error of a developed SFF system is evaluated. Finally, the feasibility of application to bio manufacturing is presented through successful fabrication of teeth and cranium model.
In this paper, we proposed the spinning right-angle stereo vision system to center the shifted object on 3-dimensional image using a human eyesight-like, and the system is reconstructed with conventional stereo vision system. In this proposed system, the centering results of objects on the 3-dimensional image are very good, and we got the parameter ratios 89~112% for the real measurement values. Therefore, the suggested the spinning right-angle stereo vision system have a high possibilities to be applied to many industrial system parts and to be used for robot system, automatic system, and etc.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.