• Title/Summary/Keyword: high-damping rubber

Search Result 86, Processing Time 0.023 seconds

Evaluation of Factors Influencing the Dynamic Characteristics of Low Hardness High Damping Rubber Bearings (저경도 고감쇠 고무받침의 동특성에 미치는 영향인자 평가)

  • Choi, Se-Woon;Lim, Hong-Joon;Cho, Hyun-Jin;Park, Kun-Nok;Oh, Ju;Jung, Hie-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.11-20
    • /
    • 2008
  • In this paper, the characteristics of low hardness high damping rubber bearings(HDRB) were studied through various prototype tests. The low hardness HDRB were tested to evaluate vertical stiffness, shear stiffness, equivalent damping ratio, various dependencies of shear properties, ultimate shear properties and other factors. The prototype test was performed according to the specifications of ISO 22762-1, and evaluated according to the specifications of ISO 22762-3. The results of the prototype test showed that shear strain and temperature were the factors that most greatly influenced shear stiffness, and that compressive stress was the factor that most greatly influenced the equivalent damping ratio. The frequency dependence test of shear properties showed that two general tendencies of frequency dependence could be observed. At frequencies over 0.1Hz, the changes in shear properties were small. However, at frequencies under 0.1Hz, the changes in shear properties rapidly decreased. The creep test and the ultimate shear test were also performed, and both of them satisfied the requirements of ISO 22762-3.

A Shaking Table Test for Equipment Isolation in the NPP (I): Rubber Bearing (원전기기의 면진을 위한 진동대 실험 I : 고무베어링)

  • Kim, Min-Kyu;Choun, Young-Sun;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.5 s.39
    • /
    • pp.65-77
    • /
    • 2004
  • In this study, the base isolation systems for equipment in the NPP are presented and the responses of each isolation system are investigated. As for the base isolation systems, a natural rubber bearing (NRB) and a high damping rubber bearing (HDRB) are selected. As input motions, artificial time histories enveloping the US NRC RG 1.60 spectrum and the probability-based scenario earthquake spectra developed for the Korean nuclear power plant site as well as a typical near-fault earthquake record are used. Uniaxial, biaxial, and triaxial excitations are conducted with PGAs of 0.1, 0.2 and 0.25g. The reduction of the seismic forces transmitted to the equipment models are determined for different isolation systems and input motions.

The effect of rubber bumper in order to suggest a new equation to calculate damping ratio, subjected building pounding during seismic excitation

  • Khatami, S.M.;Naderpour, H.;Mortezaei, A.R.;Barros, R.C.;Maddah, M.
    • Earthquakes and Structures
    • /
    • v.23 no.2
    • /
    • pp.129-138
    • /
    • 2022
  • One of the objectives to prevent building pounding between two adjacentstructures is to considerseparation distance or decrease relative displacement during seismic excitation. Although the majority of building codes around the world have basically suggested some equations or approximately recommended various distances between structuresto avoid pounding hazard, but a lot of reportsin zone of pounding have obviously shown thatsafety situation or economic consideration are not always provided due to the collisions between buildings and the cost of land, respectively. For this purpose, a dynamic MDOF model by having base isolation system is numerically considered and using various earthquake records, relative displacements are mathematically investigated. Different equations to determine the value of damping ratio are collected and the results of evaluations are listed for comparison among them to present a new equation for determination of impact damping ratio. Presented equation is depends significantly on impact velocity before and after impact based on artificial neural network, which the accuracy of them is investigated and also confirmed. In order to select the optimum equation, hysteresisloop of impact between base of building and rubber bumper is considered and compared with the hysteresis loop of each impact, calculated by different equations. Finally, using representative equation, the effect of thickness, number and stiffness of rubber bumpers are numerically investigated. The results of analysis indicate that stiffness and number of bumpers have significantly affected in zone of impact force while the thickness of bumpers have not shown significant influence to calculate impact force during earthquake. For instance, increasing the number of bumpers, gap size between structures and also the value of stiffness is caused to decrease impact force between models. The final evaluation demonstrates that bumpers are able to decrease peak lateral displacement of top story during impact.

Incorporation preference for rubber-steel bearing isolation in retrofitting existing multi storied building

  • Islam, A.B.M. Saiful;Jumaat, Mohd Zamin;Hussain, Raja Rizwan;Hosen, Md. Akter;Huda, Md. Nazmul
    • Computers and Concrete
    • /
    • v.16 no.4
    • /
    • pp.503-529
    • /
    • 2015
  • Traditionally, multi-story buildings are designed to provide stiffer structural support to withstand lateral earthquake loading. Introducing flexible elements at the base of a structure and providing sufficient damping is an alternative way to mitigate seismic hazards. These features can be achieved with a device known as an isolator. This paper covers the design of base isolators for multi-story buildings in medium-risk seismicity regions and evaluates the structural responses of such isolators. The well-known tower building for police personnel built in Dhaka, Bangladesh by the Public Works Department (PWD) has been used as a case study to justify the viability of incorporating base isolators. The objective of this research was to establish a simplified model of the building that can be effectively used for dynamic analysis, to evaluate the structural status, and to suggest an alternative option to handle the lateral seismic load. A finite element model was incorporated to understand the structural responses. Rubber-steel bearing (RSB) isolators such as Lead rubber bearing (LRB) and high damping rubber bearing (HDRB) were used in the model to insert an isolator link element in the structural base. The nonlinearities of rubber-steel bearings were considered in detail. Linear static, linear dynamic, and nonlinear dynamic analyses were performed for both fixed-based (FB) and base isolated (BI) buildings considering the earthquake accelerograms, histories, and response spectra of the geological sites. Both the time-domain and frequency-domain approaches were used for dynamic solutions. The results indicated that for existing multi-story buildings, RSB diminishes the muscular amount of structural response compared to conventional non-isolated structures. The device also allows for higher horizontal displacement and greater structural flexibility. The suggested isolation technique is able to mitigate the structural hazard under even strong earthquake vulnerability.

A Study on the Optimization of the Torsional Vibration Using DFFSS Method for DI Diesel Engine (직접분사방식 디젤엔진의 6시그마 기법을 적용한 비틀림 최적화에 대한 연구)

  • Kim, Jang-Su;Koh, Jang-Joo;Lee, Chi-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.15 no.1
    • /
    • pp.13-19
    • /
    • 2012
  • Due to a low stiffness of cranktrain and a failure experience from a history within short development time, a viscous torsional vibration damper was applied in order to reduce the torsional vibration and keep the high reliability for the durability of cranktrain system in the direct injection diesel engine. As an improvement of the crankshaft stiffness by increasing the diameter of main and pin journal, a rubber type damper could be considered. In this study, the control factors of rubber damper, the moment of inertia ring, stiffness of damper and damping coefficient of ring, were investigated by DFSS method through the analysis work and the measurement in the real engine condition.

An Evaluation of Elastic Aspects of PVC/MBS by An Acoustic Resonance Method (음향공진법을 이용한 PVC/MBS의 탄성적 특성 평가)

  • Lee, D.H.;Bahk, S.M.;Park, M.K.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.603-608
    • /
    • 2001
  • A certain amount of MBS rubber was added to improve toughness of PVC which has a strong tendency of being brittle, producing a mixture, PVC/MBS, from which test specimens were prepared. PVC has strong chemical resistance, oil resistance, frame retardancy and high mechanical strength. Also, it is relatively inexpensive to produce, but shows weakness to impact and difficult for processing. MBS, a typical toughening agent for PVC is generally known, when added in a small amount, to improve impact resistance and to minimize difficulties during the processing of the PVC without adversely affecting the positive aspects of the PVC. In this investigation, attempts were made to observe and determine the variations in elastic and damping constants of the PVC depending on the amounts of MBS added to the mixture, PVC/MBS, and also on the thicknesses of the specimens. An acoustic resonance technique was used for the tests in this investigation. It serves as a method to characterize properties of materials set in vibrational motions, which is initiated by low level stresses generated by externally supplied acoustic energy. Substantial variations were observed in the test results with the addition of the MBS to the PVC. Generally, the magnitudes of elastic constants decrease while the damping capacity improves when MBS rubber was added.

  • PDF

Design of Hybrid Mount Using Rubber Element and Piezoelctric Actuator with Application to Vibration Control (고무와 압전작동기를 이용한 하이브리드 마운트의 설계 및 진동제어 응용)

  • Yook, Ji-Yong;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.919-924
    • /
    • 2006
  • This paper presents active vibration control using a hybrid mount which consists of rubber element and the piezostack actuator. After identifying stiffness and damping properties of the rubber element and piezoelectric elements, a mechanical model of the hybrid mount is established. The mount model is then incorporated with the vibration system, and the governing equation of motion is obtained in a state space. A sliding mode controller and LQG controller are designed in order to actively attenuate the vibration of the system subjected to high frequency and small magnitude excitations. Control responses such as acceleration and force transmission through the hybrid mount are evaluated by computer simulation.

  • PDF

The Study on the improvement of dynamic characteristics with multi-orifice in airspring (멀티 오리피스를 이용한 에어스프링 동특성 개선에 관한 연구)

  • 김인수;황성호;한문성;고철수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.97-103
    • /
    • 2002
  • Vibration isolation technology using an air spring and laminated rubber bearing is widely used because it has excellent vibration isolation characteristics. In the part of that, we usually make use of the self-damped air suing. It is occupied two chambers, restrictor, diaphragm and load plate. Two chambers contain compressed air and the volume of chambers and the area of load plate give a definition of stiffness and load. The restrictor and the volume ratio of two chambers give a definition of damping ratio. The conventional model of restrictor is made of one orifice and it causes turbulent flow in the orifice at the region of large deflection. The stillness of air suing is larger and the damping is lower in the region of large deflection. In the multi-orifice case, the stiffness is similar to air spring with one orifice but damping ratio is larger than conventional air spring. And damping ratio is smaller than conventional air suing in small deflection region. Deflection is small in the region of high frequency so small damping is better than large damping. As a result, we can reduce the storage stiffness of air suing in the wide region of deflection and increase the damping ratio in the region of large deflection. After this, we will try to and the relation of Reynolds Number and Flow Resistance then we are going to make another restrictor for air spring to improve damping ratio and stiffness.

  • PDF

Seismic Responses of Seismically-Isolated Nuclear Power Plants considering Aging of High Damping Rubber Bearing in Different Temperature Environments (다른 온도환경에서 고감쇠고무 적층받침의 경년열화를 고려한 면진 원전구조물의 지진응답)

  • Park, Junhee;Choun, Young-Sun;Choi, In-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.385-392
    • /
    • 2014
  • The isolators have been generally used to reduce a seismic force. If the isolators apply to the nuclear power plants(NPPs), the durability and capacity for the structures and equipments should be ensured during the life time. In this study, the long-term behavior of isolated NPPs was analyzed for ensuring the seismic safety. The properties of isolator due to the age-related degradation were analyzed. And the seismic behavior of isolated buildings was analyzed by considering the aging of rubber bearings in different temperature environments. According to the analysis results, the natural frequency of structures was increased with time. But the maximum acceleration and maximum displacement of isolated structures have not changed significantly. Although the damaged of structure did not occurred by aging of isolators, it was presented that the spectral acceleration at the target frequency of isolated structure increased with the temperature. Therefore the isolators in the isolated buildings should be carefully designed and manufactured considering the temperature-dependancy of rubber material.