• Title/Summary/Keyword: high waves

Search Result 1,496, Processing Time 0.032 seconds

Nonlinear Earthquake Response Analysis of a Soil-Structure Interaction System Subjected to a Three-Directional Ground Motion (3축 방향 지반운동이 작용하는 지반-구조물 상호작용계의 비선형 지진응답 해석)

  • Lee, Jin Ho;Kim, Jae Kwan;Kim, Jung Han
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.4
    • /
    • pp.317-325
    • /
    • 2016
  • In this study, nonlinear earthquake responses of a soil-structure interaction(SSI) system which is subjected to a three-directional ground motion are examined. The structure and the near-field region of soil, where the geometry is irregular, the material properties are heterogeneous, and nonlinear dynamic responses are expected, are modeled by nonlinear finite elements. On the other hand, the infinite far-field region of soil, which has a regular geometry and homogeneous material properties and dynamic responses is assumed linearly elastic, is represented by three-dimensional perfectly matched discrete layers which can radiate elastic waves into infinity efficiently. Nonlinear earthquake responses of the system subjected to a three-directional ground motion are calculated with the numerical model. It is observed that the dynamic responses of a SSI system to a three-directional motion have a predominant direction according to the characteristics of the ground motion. The responses must be evaluated using precise analysis methods which can consider nonlinear behaviors of the system accurately. The the method employed in this study can be applied easily to boundary nonlinear problems as well as material nonlinear problems.

Impacts of wave and tidal forcing on 3D nearshore processes on natural beaches. Part I: Flow and turbulence fields

  • Bakhtyar, R.;Dastgheib, A.;Roelvink, D.;Barry, D.A.
    • Ocean Systems Engineering
    • /
    • v.6 no.1
    • /
    • pp.23-60
    • /
    • 2016
  • The major objective of this study was to develop further understanding of 3D nearshore hydrodynamics under a variety of wave and tidal forcing conditions. The main tool used was a comprehensive 3D numerical model - combining the flow module of Delft3D with the WAVE solver of XBeach - of nearshore hydro- and morphodynamics that can simulate flow, sediment transport, and morphological evolution. Surf-swash zone hydrodynamics were modeled using the 3D Navier-Stokes equations, combined with various turbulence models (${\kappa}-{\varepsilon}$, ${\kappa}-L$, ATM and H-LES). Sediment transport and resulting foreshore profile changes were approximated using different sediment transport relations that consider both bed- and suspended-load transport of non-cohesive sediments. The numerical set-up was tested against field data, with good agreement found. Different numerical experiments under a range of bed characteristics and incident wave and tidal conditions were run to test the model's capability to reproduce 3D flow, wave propagation, sediment transport and morphodynamics in the nearshore at the field scale. The results were interpreted according to existing understanding of surf and swash zone processes. Our numerical experiments confirm that the angle between the crest line of the approaching wave and the shoreline defines the direction and strength of the longshore current, while the longshore current velocity varies across the nearshore zone. The model simulates the undertow, hydraulic cell and rip-current patterns generated by radiation stresses and longshore variability in wave heights. Numerical results show that a non-uniform seabed is crucial for generation of rip currents in the nearshore (when bed slope is uniform, rips are not generated). Increasing the wave height increases the peaks of eddy viscosity and TKE (turbulent kinetic energy), while increasing the tidal amplitude reduces these peaks. Wave and tide interaction has most striking effects on the foreshore profile with the formation of the intertidal bar. High values of eddy viscosity, TKE and wave set-up are spread offshore for coarser grain sizes. Beach profile steepness modifies the nearshore circulation pattern, significantly enhancing the vertical component of the flow. The local recirculation within the longshore current in the inshore region causes a transient offshore shift and strengthening of the longshore current. Overall, the analysis shows that, with reasonable hypotheses, it is possible to simulate the nearshore hydrodynamics subjected to oceanic forcing, consistent with existing understanding of this area. Part II of this work presents 3D nearshore morphodynamics induced by the tides and waves.

Characteristics of Low-frequency Ambient Seismic Noise in South Korea (국내 저주파수 무작위 지진잡음의 특성 연구)

  • Park, Iseul;Kim, Ki Young;Byu, Joongmoo
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.2
    • /
    • pp.67-75
    • /
    • 2016
  • To investigate spatial and temporal variations of low-frequency (${\leq}5Hz$) ambient seismic noise, we analyzed the noise data recorded for one whole year of 2014 at surface accelerometer stations in South Korea. After decomposed into low-frequency (LF; < 1 Hz) and high-frequency (HF; ${\geq}1Hz$) components, the root-mean-squared (RMS) amplitudes and power spectral densities (PSD) of the noise data were computed. The RMS amplitudes were larger on islands and near-shore stations, but also large RMS amplitudes were observed at inland stations in large cities only for HF components. The RMS amplitudes of HF components were larger in the daytime than at nighttime and during weekdays than on Sunday and holidays. This indicates the HF components are closely related to human activities. On the contrary, daily and weekly variations were not clear in the LF components while they showed seasonal variations with its maximum during the winter and a good correlation with significant wave height. Therefore, we interpret the mechanism of LF components is closely related to natural phenomena such as sea. The amplitude of LF components decreased as an exponential function of the distance to the center of typhoons. The exponential index of -0.76 suggested that ambient seismic noise included both surface and body waves. Peak frequencies of the PSD curves were near 0.34 Hz indicating the double frequency. No temporal variation in the peak frequency was clearly noticed.

Indebtedness and Mental Health - Focusing on Depressive Symptoms and Suicidal Ideation - (가계부채가 정신건강에 미치는 영향 - 우울감과 자살생각을 중심으로 -)

  • Park, Jung Min;Oh, Uk Chan;Gu, Sea Juang
    • Korean Journal of Social Welfare
    • /
    • v.69 no.2
    • /
    • pp.171-190
    • /
    • 2017
  • This study examined the impact of indebtedness on depressive symptoms and suicidal ideation. The data came from the 4th to 10th waves of the Korea Welfare Panel Study, collected from 2009 to 2015. Analyses were conducted using logistic regression for longitudinal data that combines the fixed effects and random effects approaches. The results show that a high level of indebtedness substantially increased the risk of depressive symptoms. The household leverage ratio-the ratio of total household debt to disposable personal income-of 400% or higher increased the odds of probable depression by 50% compared with the ratio under 100%. When the percentage of personal income that goes toward paying debt is 30% or higher, the odds of probable depression went up by 66% than when the percentage of debt payment of disposal income is under 10%. The findings suggest that debt relief agencies and their programs need to incorporate means to identify and address emotional stress related to the excessive debt. This study also contributed to enriching the literature on social determinants of health by demonstrating that indebtedness is an important socioeconomic characteristic affecting individuals' mental health.

  • PDF

Distribution and characteristics of Quaternary faults in the coastal area of the southeastern Korean Peninsula: Results from a marine seismic survey (해양 탄성파 탐사 결과로 본 한반도 남동부연안 4기 단층의 분포와 특성)

  • Kim Han-Joon;Jou Hyeong-Tae;Hong Jong-Kuk;Park Gun-Tae;Nam Sang-Heon;Cho Hyun-Moo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2002.09a
    • /
    • pp.46-66
    • /
    • 2002
  • High-resolution multichannel seismic data were collected in the coastal area near the Gori nuclear power plant to investigate Quaternary fault pattern and timing. A 12 channel streamer, a sparker, and a portable recorder were used for data acquisition. Because the group interval of the streamer was 6.25 m and the sparker can generate acoustic waves with the frequency content of up to 500 Hz, the data show a significant improvement both in horizontal and vertical resolution. The area surveyed is covered with 30-40 m thick Holocene sediments that constitute the mud belt along the southeastern coast of Korea. The survey area is characterized by the well discriminated Pleistocene and Holocene boundary and shallow gas-charged zones. A number of Quaternary faults were found in the sediment column, that are nearly vertical and extend north-south. The Quaternary faults, arranged at a spacing of a few hundred meters, suggest that they were formed in response to compression, although some of them reveal extensional characteristics. Locally, faults disrupt Incised-channel fills that are interpreted to have formed in the early stage of transgression after the beginning of the Holocene. Seismic sections suggest that shallow gas in the mud belt sediments made its way upward through the fractured fault planes. The tectonism responsible for the opening of the East Sea has not persisted since the late Miocene, but vigorous Quaternary faulting activity in the vicinity of the southeastern Korean Peninsula indicates that tectonic stability has yet to be achieved in this region underlain by the hotter than normal mantle.

  • PDF

Acceleration of Anisotropic Elastic Reverse-time Migration with GPUs (GPU를 이용한 이방성 탄성 거꿀 참반사 보정의 계산가속)

  • Choi, Hyungwook;Seol, Soon Jee;Byun, Joongmoo
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.2
    • /
    • pp.74-84
    • /
    • 2015
  • To yield physically meaningful images through elastic reverse-time migration, the wavefield separation which extracts P- and S-waves from reconstructed vector wavefields by using elastic wave equation is prerequisite. For expanding the application of the elastic reverse-time migration to anisotropic media, not only the anisotropic modelling algorithm but also the anisotropic wavefield separation is essential. The anisotropic wavefield separation which uses pseudo-derivative filters determined according to vertical velocities and anisotropic parameters of elastic media differs from the Helmholtz decomposition which is conventionally used for the isotropic wavefield separation. Since applying these pseudo-derivative filter consumes high computational costs, we have developed the efficient anisotropic wavefield separation algorithm which has capability of parallel computing by using GPUs (Graphic Processing Units). In addition, the highly efficient anisotropic elastic reverse-time migration algorithm using MPI (Message-Passing Interface) and incorporating the developed anisotropic wavefield separation algorithm with GPUs has been developed. To verify the efficiency and the validity of the developed anisotropic elastic reverse-time migration algorithm, a VTI elastic model based on Marmousi-II was built. A synthetic multicomponent seismic data set was created using this VTI elastic model. The computational speed of migration was dramatically enhanced by using GPUs and MPI and the accuracy of image was also improved because of the adoption of the anisotropic wavefield separation.

Effects of Acupuncture Stimulation on the Radial artery's Pressure Pulse Wave in Healthy Young Participants: Protocol for a prospective, single-Arm, Exploratory, Clinical Study

  • Shin, Jae-Young;Ku, Boncho;Kim, Tae-Hun;Bae, Jang Han;Jun, Min-Ho;Lee, Jun-Hwan;Kim, Jaeuk U.
    • Journal of Pharmacopuncture
    • /
    • v.19 no.3
    • /
    • pp.197-206
    • /
    • 2016
  • Introduction: This study aims to investigate the effects of acupuncture stimulation on the radial artery's pressure pulse wave, along with various hemodynamic parameters, and to explore the possible underlying mechanism of pulse diagnosis in healthy participants in their twenties. Methods and analysis: This study is a prospective, single-arm, exploratory clinical study. A total of 25 healthy participants, without regard to gender, in their twenties will be recruited by physicians. Written informed consent will be obtained from all participants. The participants will receive acupuncture once at ST36 on both sides. The radial arterial pulse waves will be measured on the left arm of the subjects by using an applicable pulse tonometric device (KIOM-PAS). On the right arm (appearing twice), electrocardiogram (ECG), photoplethysmogram (PPG), respiration and cardiac output (CO) signals, will be measured using a physiological data acquisition system (Biopac module), while the velocity of blood flow, and the diameter and the depth of the blood vessel will be measured using an ultrasonogram machine on the right arm (appearing twice). All measurements will be conducted before, during, and after acupuncture. The primary outcome will be the spectral energy at high frequencies above 10 Hz ($SE_{10-30Hz}$) calculated from the KIOM-PAS device signal. Secondary outcomes will be various variables obtained from the KIOM-PAS device, ECG, PPG, impedance cardiography modules, and an ultrasonogram machine. Discussion: The results of this trial will provide information regarding the physiological and the hemodynamic mechanisms underlying acupuncture stimulation and clinical evidence for the influence of acupuncture on the pressure pulse wave in the radial artery. Ethics and dissemination: This study was approved by the Institutional Review Board (IRB) of Kyung Hee University's Oriental Medical Center, Seoul, Korea (KOMCIRB-150818-HR-030). The study findings will be published in peer-reviewed journals and presented at national and international conferences. Trial registration number: This trial was registered with the Clinical Research Information Service (CRIS) at the Korea National Institute of Health (NIH), Republic of Korea (KCT0001663), which is a registry in the World Health Organization's (WHO's) Registry Network.

Temporal and Spatial Variations of Marine Meteorological Elements and Characteristics of Sea Fog Occurrence in Korean Coastal Waters during 2013-2017 (2013~2017년 연안해역별 해양기상요소의 시·공간 변화 및 해무발생시 특성 분석)

  • Park, So-Hee;Song, Sang-Keun;Park, Hyeong-Sik
    • Journal of Environmental Science International
    • /
    • v.29 no.3
    • /
    • pp.257-272
    • /
    • 2020
  • This study investigates the temporal and spatial variations of marine meterological elements (air temperature (Temp), Sea Surface Temperature (SST), and Significant Wave Height (SWH)) in seven coastal waters of South Korea, using hourly data observed at marine meteorological buoys (10 sites), Automatic Weather System on lighthouse (lighthouse AWS) (9 sites), and AWS (20 sites) during 2013-2017. We also compared the characteristics of Temp, SST, and air-sea temperature difference (Temp-SST) between sea fog and non-sea-fog events. In general, annual mean values of Temp and SST in most of the coastal waters were highest (especially in the southern part of Jeju Island) in 2016, due to heat waves, and lowest (especially in the middle of the West Sea) in 2013 or 2014. The SWH did not vary significantly by year. Wind patterns varied according to coastal waters, but their yearly variations for each coastal water were similar. The maximum monthly/seasonal mean values of Temp and SST occurred in summer (especially in August), and the minimum values in winter (January for Temp and February for SST). Monthly/seasonal mean SWH was highest in winter (especially in December) and lowest in summer (June), while the monthly/seasonal variations in wind speed over most of the coastal waters (except for the southern part of Jeju Island) were similar to those of SWH. In addition, sea fog during spring and summer was likely to be in the form of advection fog, possibly because of the high Temp and low SST (especially clear SST cooling in the eastern part of South Sea in summer), while autumn sea fog varied between different coastal waters (either advection fog or steam fog). The SST (and Temp-SST) during sea fog events in all coastal waters was lower (and more variable) than during non-sea-fog events, and was up to -5.7℃ for SST (up to 5.8℃ for Temp-SST).

Plasma Surface Modification of Graphene and Combination with Bacteria Cellulose (Graphene의 플라즈마 표면 개질과 박테리아 셀룰로오스와의 결합성 검토)

  • Yim, Eun-Chae;Kim, Seong-Jun;Oh, Il-Kwon;Kee, Chang-Doo
    • Korean Chemical Engineering Research
    • /
    • v.51 no.3
    • /
    • pp.388-393
    • /
    • 2013
  • The study was focused to evaluate the possibility for combination membrane of bacterial cellulose (BC) and graphene with high electrical properties. BC with natural polymer matrix was known to have strong physical strength. For the combination of graphene with BC, the surface of graphene was modified with oxygen plasma by changing strength and time of radio waves in room temperature. Water contact angle of modified graphene grew smaller from $130^{\circ}$ to $12^{\circ}$. XPS analysis showed that oxygen content after treatment increased from 2.99 to 10.98%. Damage degree of graphene was examined from $I_D/I_G$ ratio of Raman analysis. $I_D/I_G$ ratio of non-treated graphene (NTG) was 0.11, and 0.36 to 0.43 in plasma treated graphene (PTG), increasing structural defects of PTG. XRD analysis of PTG membrane with BC was $2{\theta}$ same to BC only, indicating chemically combined membrane. In FT-IR analysis, 1,000 to 1,300 $cm^{-1}$ (C=O) peak indicating oxygen radicals in PTG membrane had formed was larger than NTG membrane. The results suggest that BC as an alternation of plastic material for graphene combination has a possibility in some degree on the part like transparent conductive films.

A Study on the Interference of HF Maritime Mobile Telecommunication by the PLC (전력선통신이 단파대 해상이동통신에 미치는 영향에 관한 연구)

  • Kim Jeong-nyun;Choi Jo-cheon;Jo Hag-hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.2
    • /
    • pp.250-256
    • /
    • 2006
  • The revision of radio waves act, which took effect on July 1,2005, widened the bandwidth of PLC from $9kHz{\sim}450kHz$ to $9kHz{\sim}30MHz$. This high upper limit of frequency may cause the interference in HF wireless communications. From this point of view, the goal of this research is to suggest the estimation method of whether-or-not the interference occurs and furthermore offer countermeasures to avoid it hereafter. Ministry of Information and Communication Radio Research Laboratory(MIC-RRL)has been researching for the interference and devoting themselves to turn out how much it affects to HF wireless communications since the revision took effect. This research suggests some estimation methods with receivers, signal generators, or SINAD(Signal to Noise and Distortion) Meter which is so suitable for the RF environment that we can overcome the existing limit to the EMC environment. In addition, this research is focused on securing the environment for wireless communications by establishing the safety zone or suggesting the ways to prohibit the use of the bandwidth, which may cause serious interference, in order to minimize the effect of PLC on HF maritime mobile telecommunications.