• 제목/요약/키워드: high vacuum pump

검색결과 98건 처리시간 0.029초

What Is the Key Vacuum Technology for OLED Manufacturing Process?

  • 백충렬
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.95-95
    • /
    • 2014
  • An OLED(Organic Light-Emitting Diode) device based on the emissive electroluminescent layer a film of organic materials. OLED is used for many electronic devices such as TV, mobile phones, handheld games consoles. ULVAC's mass production systems are indispensable to the manufacturing of OLED device. ULVAC is a manufacturer and worldwide supplier of equipment and vacuum systems for the OLED, LCD, Semiconductor, Electronics, Optical device and related high technology industries. The SMD Series are single-substrate sputtering systems for deposition of films such as metal films and TCO (Transparent Conductive Oxide) films. ULVAC has delivered a large number of these systems not only Organic Evaporating systems but also LTPS CVD systems. The most important technology of thin-film encapsulation (TFE) is preventing moisture($H_2O$) and oxygen permeation into flexible OLED devices. As a polymer substrate does not offer the same barrier performance as glass substrate, the TFE should be developed on both the bottom and top side of the device layers for sufficient lifetimes. This report provides a review of promising thin-film barrier technologies as well as the WVTR(Water Vapor Transmission Rate) properties. Multilayer thin-film deposition technology of organic and inorganic layer is very effective method for increasing barrier performance of OLED device. Gases and water in the organic evaporating system is having a strong influence as impurities to OLED device. CRYO pump is one of the very useful vacuum components to reduce above impurities. There for CRYO pump is faster than conventional TMP exhaust velocity of gases and water. So, we suggest new method to make a good vacuum condition which is CRYO Trap addition on OLED evaporator. Alignment accuracy is one of the key technologies to perform high resolution OLED device. In order to reduce vibration characteristic of CRYO pump, ULVAC has developed low vibration CRYO pumps to achieve high resolution alignment performance between Metal mask and substrate. This report also includes ULVAC's approach for these issues.

  • PDF

진공펌프 시스템을 이용한 고도모의 시험장치 설계 (High Altitude Simulating Test Facility Design Using Vacuum Pump System)

  • 홍윤기;이정민;나재정;현동기;김경수;박상훈
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.1160-1164
    • /
    • 2017
  • 본 연구에서는 루츠 펌프와 스크류 펌프를 이용한 진공 펌프 시스템을 이용해, 1 kg/s의 공기가 공급되는 시험장치에서 챔버 내의 압력을 2500 Pa로 유지할 수 있는 고도모의 시험장치를 설계하였다. 설계를 위해, 저유량의 공기 공급 조건에서, 소정의 펌프 조합을 이용해 실험을 수행하였다. 이를 통해, 1 kg/s급의 유량이 공급되는 시험장치를 위해서는 11대의 루츠 펌프와 33대의 스크류 펌프가 필요하다는 것을 확인할 수 있었다. 실험 결과를 이론 예측 결과와 비교하였다. 하지만, 이론적으로 예측한 흡입 유량은 실험 결과보다 20 %에 가깝게 많게 나왔다. 이는 조합 실험시, 루츠 펌프 전후단에 걸리는 차압이 높아서 발생한 것으로 여겨진다. 따라서 앞에서 제시한 것보다 더 많은 스크류 펌프를 설치할 경우, 보다 높은 진공도를가지는 시스템의 구축이 가능해질 것으로 판단된다.

  • PDF

현민 지브이티(GVT) 크라이오 펌프 이야기 (Hyunmin GVT's Cryopump Story)

  • 이동주
    • 진공이야기
    • /
    • 제2권3호
    • /
    • pp.23-29
    • /
    • 2015
  • Cryopump(cryogenic pump), with integrating cryogenic skills into vacuum technology, is the most popular high vacuum pump system, which is widely used at the commercial vacuum industries with TMP. Hyunmin GVT, Inc. is the domestic unique professional manufacturer of the cryopump systems. About ten years ago, while GVT succeeded in domestically producing cryopump systems, this high technology initiated from US became localized completely. But the process of the home production was not easy. It was possible through many trials and errors and after efforts and sacrifices of our engineers. Now many users and customers have the benefit of the advantage and excellence of the domestic cryopump systems. Especially, these days GVT is conducting researches and developments regarding low vibration cryopump and large-sized CWPs and Cryo-TMPs.

고진공 터보 분자펌프용 자기베어링 시스템의 디지털 선형 제어시스템 (Digital Linear Control System for a Magnetic Bearing System of a High Vacuum Turbomolecular Pump)

  • 노승국;경진호;박종권;남우호;고득용
    • 한국진공학회지
    • /
    • 제19권4호
    • /
    • pp.256-264
    • /
    • 2010
  • 본 논문에서는 고진공용 터보분자펌프의 비접촉 고속회전을 위한 자기베어링 시스템의 디지털 제어시스템의 설계에 대하여 소개하였으며, 실례로 800 l/s급의 고진공 펌프에 대하여 축 유연모드의 후방향 위험속도를 넘는 최대 40,000 rpm까지의 회전실험 결과를 나타내었다. 제안된 제어시스템은 기본적으로 PID 기반의 직접궤환 제어기와 자이로스코픽 모멘트 효과를 제어하기 위한 교차궤환기, 유연모우드 감쇄를 위한 리드필터와 동기진동 저감을 위한 노치필터 등으로 구성되어 있으며, 이러한 제어기는 자기부상형 터보분자펌프 외에 고속 플라이휠과 같은 자기베어링에 적용될 수 있다.

자동차용 진공펌프 멀티 베인의 최적 설계를 위한 유동장 수치해석 (Numerical Analysis of Flow Fields for Optimum Design of Vehicle Vacuum Pump with Multivanes)

  • 임태은;이계복
    • 대한기계학회논문집B
    • /
    • 제35권9호
    • /
    • pp.883-890
    • /
    • 2011
  • 진공 펌프의 최적설계를 위해 수치해석을 수행하였다. 진공 베인 펌프 설계인자인 베인 각도 변화, 입출구 파이프의 위치와 각도 변화, 베인 개수 변화와 회전속도에 따른 진공도의 영향을 평가하였다. 베인 각도 변화는 동일한 체적의 유지로 최대 진공도 값에 큰 영향을 미치지 않았으나, 토출부의 각도 변화는 유동흐름의 간섭을 줄일 수 있고 이것으로 인한 펌프의 손실을 줄일 수 있다. 회전속도가 증가할수록 질량유량은 증가하였으나 고속 회전속도에서 최대 진공도 값을 나타내지는 않았다. 또한 베인의 개수가 증가할수록 질량유량의 변화폭은 감소하였고, 압력강하는 완화됨을 확인하였다.

Inductive Sensor를 이용한 고진공 분자펌프용 자기부상계의 제어 (Control of a Magnetic Suspension System with Inductive Sensors for a High Vacuum Turbomolecular Pump)

  • 노승국;박병철;정민경;노명규;박종권;경진호;구본학
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.361-365
    • /
    • 2002
  • In this paper, a magnetic suspension system with inductive sensors fur a high vacuum turbomolecular pump(TMP) is discussed. The performance of designed inductive position sensor is evaluated by static and dynamic test, and the test results show sensitivity of about 6,000 V/m and dynamic bandwidth of 750 ㎐. The protype of magnetic suspension system is designed and constructed with 5-axis magnetic bearing, inductive sensor and BLDC internal motor. With DSP based digital PID control system, the prototype is examined its high damping ratio and stable operation up to 20,000 rpm of rotation.

  • PDF

Modelling of Optimum Design of High Vacuum System for Plasma Process

  • Kim, Hyung-Taek
    • International journal of advanced smart convergence
    • /
    • 제10권1호
    • /
    • pp.159-165
    • /
    • 2021
  • Electronic devices used in the mobile environments fabricated under the plasma conditions in high vacuum system. Especially for the development of advanced electronic devices, high quality plasma as the process conditions are required. For this purpose, the variable conductance throttle valves for controllable plasma employed to the high vacuum system. In this study, we analyzed the effects of throttle valve applications on vacuum characteristics simulated to obtain the optimum design modelling for plasma conditions of high vacuum system. We used commercial simulator of vacuum system, VacSim(multi) on this study. Reliability of simulator verified by simulation of the commercially available models of high vacuum system. Simulated vacuum characteristics of the proposed modelling agreed with the observed experimental behaviour of real systems. Pressure limit valve and normally on-off control valve schematized as the modelling of throttle valve for the constant process-pressure of below 10-3 torr. Simulation results plotted as pump down curve of chamber, variable valve conductance and conductance logic of throttle valve. Simulated behaviors showed the applications of throttle valve sustained the process-pressure constantly, stably, and reliably in plasma process.

Design of closed-loop nitrogen Joule-Thomson refrigeration cycle for 67 K with sub-atmospheric device

  • Lee, C.;Lee, J.;Jeong, S.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제15권1호
    • /
    • pp.45-50
    • /
    • 2013
  • Closed-loop J-T (Joule-Thomson) refrigeration cycle is advantageous compared to common open loop $N_2$ decompression system in terms of nitrogen consumption. In this study, two closed-loop pure $N_2$ J-T refrigeration systems with sub-atmospheric device for cooling High Temperature Superconductor (HTS) power cable are investigated. J-T cooling systems include 2-stage compressor, 2-stage precooling cycle, J-T valve and a cold compressor or an auxiliary vacuum pump at the room temperature. The cold compressor and the vacuum pump are installed after the J-T valve to create sub-atmospheric condition. The temperature of 67 K is possible by lowering the pressure up to 24 kPa at the cold part. The optimized hydrocarbon mixed refrigerant (MR) J-T system is applied for precooling stage. The cold head of precooling MR J-T have the temperature from 120 K to 150 K. The various characteristics of cold compressor are invstigated and applied to design parameter of the cold compressor. The Carnot efficiency of cold compressor system is calculated as 16.7% and that of vacuum pump system as 16.4%. The efficiency difference between the cold compressor system and the vacuum pump system is due to difference of enthalpy change at cryogenic temperature, enthalpy change at room temperature and different work load at the pre-cooling cycle. The efficiency of neon-nitrogen MR J-T system is also presented for comparison with the sub-atmospheric devices. These systems have several pros and cons in comparison to typical MR J-T systems such as vacuum line maintainability, system's COP and etc. In this paper, the detailed design of the subcooled $N_2$ J-T systems are examined and some practical issues of the sub-atmospheric devices are discussed.