• Title/Summary/Keyword: high transmittance

Search Result 913, Processing Time 0.025 seconds

Transparent Conducting Multilayer Electrode (GTO/Ag/GTO) Prepared by Radio-Frequency Sputtering for Organic Photovoltaic's Cells

  • Pandey, Rina;Kim, Jung Hyuk;Hwang, Do Kyung;Choi, Won Kook
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.219-223
    • /
    • 2015
  • Indium free consisting of three alternating layers GTO/Ag/GTO has been fabricated by radio-frequency (RF) sputtering for the applications as transparent conducting electrodes and the structural, electrical and optical properties of the gallium tin oxide (GTO) films were carefully studied. The gallium tin oxide thin films deposited at room temperature are found to have an amorphous structure. Hall Effect measurements show a strong influence on the conductivity type where it changed from n-type to p-type at $700^{\circ}C$. GTO/Ag/GTO multilayer structured electrode with a few nm of Ag layer embedded is fabricated and show the optical transmittance of 86.48% in the visible range (${\lambda}$ = 380~770 nm) and quite low electrical resistivity of ${\sim}10^{-5}{\Omega}cm$. The resultant power conversion efficiency of 2.60% of the multilayer based OPV (GAG) is lower than that of the reference commercial ITO. GTO/Ag/GTO multilayer is a promising transparent conducting electrode material due to its low resistivity, high transmittance, low temperature deposition and low cost components.

Optical and structural properties of metal-dielectric near-infrared cutoff filters for plasma display panel application

  • Lee, Jang-Hoon;Lee, Kwang-Su;Hwangbo, Chang-Kwon
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.88-91
    • /
    • 2003
  • Electromagnetic interference shielding and near-infrared cutoff filters for plasma display panel application were designed and fabricated by radio frequency magnetron sputtering. Three types of the filters were prepared: the basic structure of type A consisted of [$TiO_2$ Ti Ag $TiO_2$]; type B, of [$TiO_2$ ITO Ag $TiO_2$]; type C, of [$TiO_2$ ITO Ag ITO $TiO_2$]. Ti and ITO layers deposited on Ag layers were employed as barriers to prevent the oxidation and the diffusion of Ag film into the adjacent oxide layers. Optical, electrical, chemical, and structural properties were investigated, and the result shows that the filters with the ITO barrier layers provided an enhancement in transmittance in the visible owing to a lower absorption of ITO layers than Ti layers. Type C filter showed better optical and electrical performances and smoother surface roughness than Type B and C filters: the average sheet resistance was as low as 1.51 $\Omega\Box$ (where $\square$ stands for a square film), the peak transmittance in the visible was as high as 78.2 %, and the average surface roughness was 1.48 nm.

Effect of SiO2 and Nb2O5 Buffer Layer on Optical Characteristics of ITO Thin Film

  • Kwon, Yong-Han;Jang, Gun-Eik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.1
    • /
    • pp.29-33
    • /
    • 2015
  • This paper presents the results of the optical characteristics of ITO thin film with different buffer layer thicknesses of $SiO_2$ and $Nb_2O_5$ for touch sensor application. $SiO_2$ and $Nb_2O_5$ buffer layers were deposited using RF magnetron sputtering equipment. The buffer layers were inserted between glass and ITO layers. In order to compare with the experimental results, the Essential Macleod Program (EMP) was adopted. Based on EMP simulation, the [$Nb_2O_5{\mid}SiO_2{\mid}ITO$] multi-layered thin film exhibited high transmittance of more than 85% in the visible region. The actual experimental results also showed transmittance of more than 85% in the visible region, indicating that the simulated results were well matched with the experimental results. The sheet resistance of ITO based film was about $340{\Omega}/sq$. The surface roughness maintained a relatively small value within the range of 0.1~0.4 nm when using the $Nb_2O_5$ and $SiO_2$ buffer layers.

Structural analysis and photoluminescent study of thin film rhombohedral zinc orthosilicate doped with manganese

  • Yoon, Kyung-Ho;Kim, Joo-Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.114-114
    • /
    • 2010
  • In this study, structural properties and photoluminescent characteristics of thin film rhombohedral zinc orthosilicate doped with manganese ($Zn_2SiO_4:Mn$) were investigated. The $Zn_2SiO_4:Mn$ films showed a pronounced absorption edge in the near ultraviolet wavelength region and a high optical transparency in the visible spectral range. The maximum transmittance reached 0.922 at 597 nm, which was very close to the transmittance of the fused quartz substrate alone (0.935). The $Zn_2SiO_4:Mn$ films were composed of rhombohedral polycrystalline grains with random crystallographic orientation. The broad-band photoluminescence emission peaked at around 525 nm was observed from the $Zn_2SiO_4:Mn$ films, which was ascribed to the radiative relaxation from the $^4T_1$ lowest excitation state to $^6A_1$ ground state of 3d5 electrons in divalent manganese ion. The excitation band exhibited a peak maximum at 259 nm in the near ultraviolet region, which was considered to be associated with the charge transfer transition of divalent Mn ion in the $Zn_2SiO_4$ system.

  • PDF

A study on the properties of transparent conductive ZnO:Al films on variaton substrate temperature (기판온도 변화에 따른 ZnO:Al 투명 전도막의 특성 변화)

  • Yang, J.S.;Seong, H.Y.;Keum, M.J.;Son, I.H.;Shin, S.K.;Kim, K.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.525-528
    • /
    • 2001
  • ZnO:Al thin film can be used as a transparent conducting oxide(TCO) which has low electric resistivity and high optical transmittance for the front electrode of amorphous silicon solar cells and display devices. This study of electrical, crystallographic and optical properties of Al doped ZnO thin films prepared by Facing Targets Sputtering(FTS), where strong internal magnets were contained in target holders to confine the plasma between the targets, is described. Optimal transmittance and resistivity was obtained by controlling flow rate of $O_2$ gas and substrate temperature. When the $O_2$ gas rate of 0.3 and substrate temperature $200^{\circ}C$, ZnO:Al thin film had strongly oriented c-axis and lower resistivity( < $10^{-4}{\Omega}-cm$ ).

  • PDF

Structure and Properties of Sputtered Indium Tin Oxide Thin Film (R.F Sputtering 법으로 증착한 ITO 박막의 미세구조와 전기$\cdot$광학적 특성)

  • Jung Y.H.;Lee E.S.;Munir B.;Wibowo R.A.;Kim K.H.
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.4
    • /
    • pp.150-155
    • /
    • 2005
  • Highly conductive and transparent in the visible region tin-doped indium oxide(ITO) thin films were deposited on Corning glass by r.f sputtering. To achieve high transmittance and low resistivity, we examined various parameters such as r.f power and deposition time. The films crystallinity shifted from (222) to (400) and (440) orientation as deposition time and r.f power increased. Surface roughness RMS value increased proportionally with deposition time. The lowest resistivity was $5.36{\times}10^{-4}{\Omega}{\cdot}cm$ at 750 nm thickness, $200^{\circ}C$ substrate temperature and 125 w r.f power. All of the films showed over $85\%$ transmittance in the visible wavelength range.

Effect of Ar Flow Ratio on the Characteristics of Ga-Doped ZnO Grown by RF Magnetron Sputtering (마그네트론 스퍼터를 이용한 Ar 가스 유량 조절에 따른 GZO의 특성 변화)

  • Jeong, Youngjin;Lee, Seungjin;Son, Changsik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.62.1-62.1
    • /
    • 2011
  • The structural, optical, and electrical properties of Ga-doped ZnO (GZO) thin films on glass substrates grown by radio-frequency(RF) magnetron sputtering were investigated. The flow ratio of Ar was varied as a deposition parameter for growing high-quality GZO thin films. The structural properties and surface morphologies of GZO were characterized by the X-ray diffraction. To analyze the optical properties of GZO, the optical absorbance was measured in the wavelength range of 300-1100 nm by using UV-VIS spectrophotometer. The optical transmittance, absorption coefficient, and optical bandgap energy of GZO thin films were calculated from the measured data. The crystallinity of GZO thin films is improved and the bandgap energy increases from 3.08 to 3.23eV with the increasing Ar flow ratio from 10 to 100 sccm. The average transmittance of the films is over 88% in the visible range. The lowest resistivity of the GZO is $6.215{\times}10^{-4}{\Omega}{\cdot}cm$ and the hall mobility increases with the increasing Ar flow ratio. We can optimize the characteristics of GZO as a transparent electrode for thin film solar cells by controlling Ar flow ratio during deposition process.

  • PDF

The transparent and conducting tin oxide thin films by the remote plasma chemical vapor deposition (원격플라즈마화학증착에 의한 투명전도성 산화주석 박막)

  • 이흥수;윤천호;박정일;박광자
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.1
    • /
    • pp.43-50
    • /
    • 1998
  • Transparent and conducting tin oxide films were prepared on Pyrex glass substrates by the remote plasma chemical vapor deposition (RPCVD). The main control variables of the RPCVD process included the deposition time, the flow rates of tetramethyltin, oxygen and argon, the radio-frequency power, and the substrate temperature. Dependence of the deposition rate, electric resistivity, optical transmittance and crystal structure on these parameters was systematically examined to prepare high qualities of tin oxide films and to better understand RPCVD process. The effect of those parameters on the properties of tin oxide films in complicatedly related on another. A tin oxide film parameters on the protimized deposition conditions exhibited deposition rate of 102 $\AA$/min, electric resistivity of $9.7\times 10^{-3}\Omega$cm and visible transmittance of ~80%.

  • PDF

Optical Properties of PVA Polarizing Films Surface-modified by UV Irradiation (자외선 조사에 의해 표면 개질된 PVA 편광필름의 광학특성)

  • Koo, Gwang-Hoe;Jang, Jin-Ho
    • Textile Coloration and Finishing
    • /
    • v.18 no.6 s.91
    • /
    • pp.49-56
    • /
    • 2006
  • Surface treatment using UV irradiation was carried out to improve optical properties of polarizing films. The effects of UV energy of the UV-treated PVA films were investigated by measuring reflectance, surface roughness, contact angles, ESCA, and ATR. Reflectance decreased at wavelength of 450 nm or less and surface roughness increased with increasing UV energy. Water contact angle increased in the irradiated PVA films and surface energy decreased with increase in w energy. An analysis showed that the OH groups were broken and some new groups were introduced such as C=C and C=O bonds together with increased $O_{1s}/C_{1s}$, resulting in the observed surface modification effect. Surface modified PVA polarizing films showed improvement in light transmittance of polarizing films at high wavelength region without deteriorating polarization efficiency, which was not affected by UV irradiation sequence during manufacturing processes such as coloring and drawing.

A Study on the Electrical Properties of ITO Thin Films with Various Oxygen Gas Flow Rate (산소 가스 유량비 변화에 따른 ITO 박막의 전기적 특성에 관한 연구)

  • Choi, Dong-H.;Keum, Min-J.;Jean, A.R.;Han, Jean-G.
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.3
    • /
    • pp.144-148
    • /
    • 2007
  • To prepare the transparent electrode for electronic devices such as flat panel or flexible displays, solar cells, and touch panels; tin doped $In_2O_3$ (ITO) films with low resistivity and a high transparency were fabricated using a facing target sputtering (FTS) system at the various oxygen gas flow rate. The carrier concentration and mobility of ITO films were measured by Hall Effect measurement. And the transmittance was measured using the UV-VIS spectrometer. As a result, we can obtain the ITO thin films prepared at 10% oxygen gas flow ratio, thickness 150 nm with transmittance 85% and resistivity $8.1{\times}10^{-4}{\Omega}cm$ and surface roughness 5.01 nm.