• Title/Summary/Keyword: high transmittance

검색결과 913건 처리시간 0.029초

이중 현미경 구조를 이용한 마이크로 렌즈 및 핀홀 어레이 기반 병렬 공초점 시스템 (A Parallel Mode Confocal System using a Micro-Lens and Pinhole Array in a Dual Microscope Configuration)

  • 배상우;김민영;고국원;고경철
    • 제어로봇시스템학회논문지
    • /
    • 제19권11호
    • /
    • pp.979-983
    • /
    • 2013
  • The three-dimensional measurement method of confocal systems is a spot scanning method which has a high resolution and good illumination efficiency. However, conventional confocal systems had a weak point in that it has to perform XY axis scanning to achieve FOV (Field of View) vision through spot scanning. There are some methods to improve this problem involving the use of a galvano mirror [1], pin-hole array, etc. Therefore, in this paper we propose a method to improve a parallel mode confocal system using a micro-lens and pin-hole array in a dual microscope configuration. We made an area scan possible by using a combination MLA (Micro Lens Array) and pin-hole array, and used an objective lens to improve the light transmittance and signal-to-noise ratio. Additionally, we made it possible to change the objective lens so that it is possible to select a lens considering the reflection characteristic of the measuring object and proper magnification. We did an experiment using 5X, 2.3X objective lens, and did a calibration of height using a VLSI calibration target.

나이프 코팅 기법으로 제작한 은 나노와이어 투명전극 기반의 대면적 ITO-Free 유기 태양전지 (Silver Nanowire Anode-Based, Large-Area Indium Tin Oxide-Free Organic Photovoltaic Cells Fabricated by the Knife Coating Method)

  • 한규효;김건우;이재학;석재영;양민양
    • 한국생산제조학회지
    • /
    • 제24권1호
    • /
    • pp.43-48
    • /
    • 2015
  • Silver nanowire (AgNW) is a material that is increasingly being used for transparent electrodes, as a substitute for indium tin oxide (ITO), owing to its flexibility, high transmittance to sheet resistance ratio, and simple production process. This study involves manufacturing large-area organic photovoltaic cells (OPVs) deposited on AgNW electrodes. We compared the efficiency of OPVs with ITO and AgNW electrodes. The results verified that an OPV with an AgNW electrode performed better than that with an ITO electrode. Furthermore, by using the knife coating method, we successfully fabricated large-area OPVs without the loss of efficiency. Use of AgNW instead of ITO demonstrated that an OPV could be produced on various substrates by the solution process method, dropping the productions costs significantly. Additionally, by using the knife coating method, the process time and amount of wasted solution are reduced. This leads to an increase in the efficient fabrication of the OPV.

Electrochromic Device for the Reflective Type Display Using Reversible Electrodeposition System

  • Kim, Tae-Youb;Cho, Seong M.;Ah, Chil Seong;Suh, Kyung-Soo;Ryu, Hojun;Chu, Hye Yong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.232.1-232.1
    • /
    • 2014
  • The green displays are the human friendly displays, the nature friendly displays, and the economical displays. Electrochromic displays are low cost and environmental devices because they do have more choice of colours and use much less power. The elements of the electrochromic devices consist of at least two conductors, an electrochromic material and an electrolyte. The optical properties were obtained using the optical contrast between the transparency of the substrate and the coloured state of the electrochromic materials. These devices can be fully flexible and printable. Due to the characteristics of the high coloration efficiency and memory effects, the electrochromic devices have been used in various applications such as information displays, smart windows, light shutters and electronic papers. Among these technical fields switchable mirrors have been received much attention in the applicative point of view of various electronic devices production. We have developed a novel silver (Ag) deposition-based electrochromic device for the reversible electrodeposition (RED) system. The electrochromic device can switch between transparent states and mirror states in response to a change in the applied voltage. The dynamic range of transmittance percent (%) for the fabricated device is about 90% at 550 nm wavelength. Also, we successfully fabricated the large area RED display system using the parted electrochromic cells of the honey comb structure.

  • PDF

Electrical, Electronic Structure and Optical Properties of Undoped and Na-doped NiO Thin Films

  • Denny, Yus Rama;Lee, Kangil;Seo, Soonjoo;Oh, Suhk Kun;Kang, Hee Jae;Yang, Dong-Seok
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.193.1-193.1
    • /
    • 2014
  • This study was to investigate the electronic structure and optical properties of Na doped into NiO thin film using XPS and REELS. The films were grown by electron beam evaporation with varying the annealing temperature. The relationship between the electrical characteristics with the local structure of NiO thin films was also discussed. The x-ray photoelectron results showed that the Ni 2p spectra for all films consist of Ni 2p3/2 which indicate the presence of Ni-O bond from NiO phase and for the annealed film at temperature above $200^{\circ}C$ shows the coexist Ni oxide and Ni metal phase. The reflection electron energy loss spectroscopy spectra showed that the band gaps of the NiO thin films were slightly decreased with Na-doped into films. The Na-doped NiO showed relatively low resistivity compared to the undoped NiO thin films. In addition, the Na-doped NiO thin films deposited at room temperature showed the best properties, such as a p-type semiconducting with low electrical resistivity of $11.57{\Omega}.cm$ and high optical transmittance of ~80% in the visible light region. These results indicate that the Na doping followed by annealing process plays a crucial in enhancing the electrical and optical properties of NiO thin films. We believe that our results can be a good guide for those growing NiO thin films with the purpose of device applications, which require deposited at room temperature.

  • PDF

Transparent Conductive Films Composite with Copper Nanoparticle/Graphene Oxide Fabricated by dip Process and Electrospinning

  • 김진운;김경민;김용호;김수용;조수지;이응상;석중현
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.382.2-382.2
    • /
    • 2014
  • We explain a method to fabricate multi-layered transparent conductive films (TCF) using graphene oxide (GO), copper powder and polyurethane (PU) solution. The flexible graphene nanosheets (GNSs) serve as nanoscale connection between conductive copper nanoparticles (CuNps) and PU nanofibers, resulting in a highly flexible TCF. To fabricate conductive films with high transmittance, polyurethane (PU) nanofibers were used for a conductive network consisting of CuNps and GNSs (CuNps-GNSs). In this experiment, copper powder and graphene oxides were mixed in deionized water with the ultrasonication for 2 h. NaBH4 solution is used as a reduction agents of CuNps and GNSs (CuNps-GNSs) under a nitrogen atmosphere in the oil bath at 100% for 24 h to mixed. The purified and dispersed CuNp-GNS were obtained in deionized water, and diluted to a 10wt.% based on the contents of GNSs. Polyurethane (PU) nanofibers on a PET substrate were formed by electrospinning method. PET slides coated with the PU nanofibers were immersed into CuNp-GNS solution for several second, rinsed briefly in deionized water, and dried to obtain self-assembled CuNp-GNS/PU films. The morphology of the multi-layered films were characterized with a field emission scanning electron microscope (FE-SEM, Hitachi S-4700) and atomic force microscope (AFM, PSIA XE-100). The electrical property was analysed by the I-V measurement system and the optical property was measured by the UV/VIS spectroscopy.

  • PDF

Effect of MoO3 Thickness on the Electrical, Optical, and structural Properties of MoO3 Graded ITO Anodes for PEDOT:PSS-free Organic Solar Cells

  • Lee, Hye-Min;Kim, Seok-Soon;Chung, Kwun-Bum;Kim, Han-Ki
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.478.1-478.1
    • /
    • 2014
  • We investigated $MoO_3$ graded ITO electrodes for organic solar cells (OSCs) without PEDOT:PSS buffer layer. The effect of $MoO_3$ thickness on the electrical, optical, and structural properties of $MoO_3$ graded ITO anodes prepared by RF/DC magnetron co-sputtering system using $MoO_3$ and ITO targets was investigated. At optimized conditions, we obtained $MoO_3$ graded ITO electrodes with a low sheet resistance of 13 Ohm/square, a high optical transmittance of 83% and a work function of 4.92 eV, comparable to conventional ITO films. Due to the existence of $MoO_3$ on the ITO electrodes, OSCs fabricated on $MoO_3$ graded ITO electrode without buffer layer successfully operated. Although OSCs fabricated on ITO anode without buffer layer showed a low power conversion efficiency of 1.249%, OSCs fabricated on $MoO_3$ graded ITO electrode without buffer layer showed a outstanding cell performance of 2.545%. OSCs fabricated on the $MoO_3$ graded ITO electrodes exhibited a fill factor of 61.275%, a short circuit current of 7.439 mA/cm2, an open circuit voltage of 0.554 V, and a power conversion efficiency of 2.545%. Therefore, $MoO_3$ graded ITO electrodes can be considered a promising transparent electrode for cost efficient and reliable OSCs because it could eliminate the use of acidic PEDOT:PSS buffer layer.

  • PDF

광학용 아크릴 점착제 제조 및 점착특성에 관한 연구 (Preparation of Acrylic Pressure Sensitive Adhesives for Optical Applications and Their Adhesion Performance)

  • 백승석;장세정;이종훈;고동한;이상훈;황석호
    • 폴리머
    • /
    • 제38권2호
    • /
    • pp.199-204
    • /
    • 2014
  • 본 연구는 2-ethylhexyl acrylate와 2-hydroxyethyl acrylate 기본구조에 isobornyl acrylate와 tetrahydrofurfuryl acrylate(THFA)의 조성비를 변화시키면서 광중합된 4원 공중합체를 합성한 후 가교제로 1,6-hexanediol diacrylate가 혼합된 시럽을 제조하였다. 합성한 시럽에 UV-광원을 조사시켜 점착제를 제조한 후 점착특성과 광학특성을 고찰하였으며 시럽의 기본물성인 고형분, 점도, 및 분자량 분석도 수행하였다. THFA의 함량이 증가할수록 시럽의 분자량은 감소하였으나 고형분은 반대로 증가하였다. 점착제의 박리강도는 THFA의 함량에 따른 반비례관계를 나타내고 점착제의 표면에너지는 비례관계를 나타내었다. 또한 모든 점착제에서 92% 이상의 광투과도와 1.0%이하의 haze값, 그리고 1.0 이하의 색차계값을 보여주었다.

DC 마그네트론 스퍼터링을 이용한 IZO 박막의 제조와 특성 연구 (Preparation and Characterization of IZO Thin Films grown by DC Magnetron Sputtering)

  • 박창하;이학준;김현범;김동호;이건환
    • 한국표면공학회지
    • /
    • 제38권5호
    • /
    • pp.188-192
    • /
    • 2005
  • Indium zinc oxide (IZO) thin films were deposited on glass substrate by dc magnetron sputtering. The effects of oxygen flow rate and deposition temperature on electrical and optical properties of the films were investigated. With addition of small amount of oxygen gas, the characteristic properties of amorphous IZO films were improved and the specific resistivity was about $4.8{\times}10^{-4}\Omega{\cdot}cm$. Change of structural properties according to the deposition temperature was observed with XRD, SEM, and AFM. Films deposited above $300^{\circ}C$ were found to be polycrystalline. Surface roughness of the films was increased due to the formation of grains on the surface. Electrical conductivity became deteriorated for polycrystalline IZO films. Consequently, high quality IZO films could be prepared by do sputtering with $O_{2}/Ar{\simeq}0.03$ and deposition temperature in range of $150\~200^{\circ}C$; a specific resistivity of $3.4{\times}10^{-4}{\Omega}{\cdot}cm$, an optical transmission over $90\%$ at wavelength of 550 nm, and a rms value of surface roughness about $3{\AA}$.

EFFECT OF DEPOSITION METHODS ON PHYSICAL PROPERTIES OF POLYCRYSTALLINE CdS

  • Lee, Y.H.;Cho, Y.A.;Kwon, Y.S.;Yeom, G.Y.;Shin, S.H.;Park, K.J.
    • 한국표면공학회지
    • /
    • 제29권6호
    • /
    • pp.862-868
    • /
    • 1996
  • Cadmium sulfide is commonly used as the window material for thin film solar cells, and can be prepared by several techniques such as sputtering, spray pyrolysis, close spaced sublimation (CSS), thermal evaporation, solution growth methods, etc. In this study, CdS films were deposited by thermal evaporation, close spaced sublimation, and solution growth methods, respectively, and the effects of the methods on physical properties of polycrystalline CdS deposited on ITO/glass were investigated. Also, the effects of variously prepared CdS thin films on the physical properties of CdTe deposited on the CdS were investigated. The thickness of polycrystalline CdS films was maintained at $0.3\mu\textrm{m}$ except for the solution grown CdS when $0.2\mu\textrm{m}$ thick CdS was deposited. After the deposition, all the samples were annealed at $400^{\circ}C$ or $500^{\circ}C$ in H2 atmosphere. To investigate physical properties of the deposited and annealed CdS thin films, UV-VIS spectro-photometry, X-ray diffractometry (XRD), and Auger electron spectroscopy (AES), and cross sectional transmission electron microscopy(XTEM) were used to analyze grain size, crystal structure, preferred orientation, optical properties, etc. The annealed CdS showed the bandedge transition at 510nm and the optical transmittance high than 80% for all of the variously deposited films. XRD results showed that CdS thin films variously deposited and annealed had the same hexagonal structures, however, showed different preferred orientations. CSS grown CdS had [103] preferred orientation, thermally evaporated CdS had [002], and CdS grown by the solution growth had no preferred orientation. The largest grain size was obtained for the CSS grown CdS while the least grain size was obtained for the solution grown CdS. Some of the physical properties of CdTe deposited on the CdS thin film such as grain size at the junction and grain orientation were affected by the physical properties of CdS thin films.

  • PDF

마그네트론 스퍼터링 법을 이용한 IZO/Ag/IZO 다층 박막 투명 면상 발열체 (IZO/Ag/IZO Multilayers Prepared by Magnetron Sputtering for Flexible Transparent Film Heaters)

  • 박소원;강동령;김나영;황성훈;전승훈;;김태훈;김서한;박철우;송풍근
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.114.2-114.2
    • /
    • 2017
  • Transparent film heaters (TFHs) based on Joule heating are currently an active research area. However, TFHs based on an indium tin oxide (ITO) monolayer have a number of problems. For example, heating is concentrated in part of the device. Also, heating efficiency is low because it has high sheet resistance ($R_S$). Resistance of indium zinc oxide (IZO) is similar to ITO and it can be used to flexible applications due to its amorphous structure. To solve these problems, our study introduced hybrid layers of IZO/Ag/IZO deposited by magnetron sputtering, and the electrical, optical, and thermal properties were estimated for various thickness of the metal interlayer. It was found that the sheet resistance of the multilayer was mainly dependent on the thickness of the Ag layers. The $R_S$ of IZO(40)/Ag/IZO(40nm) multilayer was 5.33, 3.29, $2.15{\Omega}/{\Box}$ for Ag thickness of 10, 15, and 20nm, respectively, while the $R_S$ of an IZO monolayer(95nm) was $59.58{\Omega}/{\Box}$. The optical transmittance at 550nm for the IZO(95nm) monolayer is 81.6%, and for the IZO(40)/Ag/IZO(40nm) multilayers with Ag thickness 10, 15 and 20nm, is for 72.8, 78.6, and 63.9%, respectively. The defrost test showed that the film with the lowest RS had the highest heat generation rate (HGR) for the same applied voltage. The results indicated that IZO(40)/Ag(15)/IZO(40nm) multilayer has the best suitable property, which is a promising thin film heater for the application in vehicle windshield.

  • PDF