• Title/Summary/Keyword: high toughness

Search Result 823, Processing Time 0.031 seconds

A Study on the construction method of reinforced shotcrete using structural synthetic fiber (터널 지보특성 개선을 위한 보강함성섬유 숏크리트공법 연구)

  • Han, Il-Yeong;Kim, Bang-Lae;Won, Jong-Pil
    • 한국터널공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.259-261
    • /
    • 2005
  • The needs of improving the performance of wet shotcrete has become one of the most important issues in the tunnel field. The aim of this paper is to research the construction method of reinforced shotcrete using structural polymer fiber which exhibits a high quality in toughness and durability for the support of tunnel.

  • PDF

On Fracture Mechanism of SK-5 Steel by AE Method (AE에 의한 SK-5강의 파괴기구 구명)

  • Kim, Sang-Cheol;Lee, Ok-Seop;Ham, Kyeong-Chun;Oh, Beom-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.4
    • /
    • pp.130-139
    • /
    • 1990
  • It is well known that mechanisms of fracture and crack growth depend upon material characteristics such as fracture toughness, environmental condition, crack geometry and mechanical properties. It seems to be very important to investighate the effects of the above factors on the behavior of structural components which contain flaws for the detailed evaluation of their integrity. In this experimental research, fracture behaviors of SK-5 high carbon steel was investigated by using Acoustic Emission(AE) technique. Fracturing processes of materials were estimated through both the tension test with nominal specimens and the fracture test with compact tension specimens. The critical applied load which corresponds to the crack initiation and propagation is very improtant for the determination of yield strength of fracture toughness. The critical applied load($P_Q$) was determined through AE method and the source of AE signal was estimated by fractography analysis. The experimental results may contribute to the safety analyses and strength evaluation of structures.

  • PDF

Sintering Characterization of Hot-Pressed SiC Prepared by SHS Microwave Method (SHS Microwave 법으로 합성한 SiC 분말의 고온가압 소결특성)

  • 김도경;안주삼;김익진;이형복
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.8
    • /
    • pp.865-872
    • /
    • 1995
  • Ultra-fine $\beta$-SiC powders were fabricated by self-propagating high temperature synthesis process (SHS) using microwave oven. The flexural strength, fracture toughness, and hardness of hot pressed sample at 200$0^{\circ}C$ for 60 min using synthesized SiC powders, which had 2 wt% of Al2O3 and 2.5 wt% of B4C content, showed 438 MPa, 4.15MPa.m1/2 and 28 GPa, respectively. The highest strength, fracture toughness, and hardness of composites containing 4wt% of Al2O3, which had highest relative density of 99.9%, showed 458 MPa, 4.6MPa.m1/2 and 36.2 GPa, respectively.

  • PDF

Microstructure characterization of glass fiber-doped cordierite (그라스 화이버 첨가 코디에라이트의 미세구조특성)

  • Choi, H.S.;Kim, M.K.;Choi, S.H.;Han, T.H.;Park, S.J.;Hwang, J.S.;Han, B.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.11a
    • /
    • pp.97-101
    • /
    • 1992
  • Cordierite glass ceramic has become an electronic substrate material for electronic circuits and the use of whiskers for improving strength and toughness is evident. Green sheets of mixtures containing 15% silicon nitride were sintered to greater than 99 % density. The microstructure was analysed using optical microscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD). The toughness and hardness were improved with increasing the whisker vol. % and sintering temperature. Especially, it is assumed that toughening increasing at the more high sintering temperature relevants to the glass phase increasing, as showned in the roughness of the fracture surfaces. It was directionally dependent of whisker direction during processing.

  • PDF

Mechanical Behavior and Fracture Resistance of $SCS6/Si_3N_4$ CFCCs ($SCS6/Si_3N_4$ 연속섬유강화 세라믹 복합재료의 기계적 거동 및 파괴저항평가)

  • Yoon, Yu-Sung;Kwon, Oh-Heon;Jenkins, Michael G.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.658-662
    • /
    • 2001
  • Continuous fiber ceramic composites(CPCCs) having the advantages of ceramics resistance to heat, eroson can be applied in chemical reactors and engine. CFCCs has relatively high stiffness in spite of low weight. In particular, it exhibits greatly increased toughness, which serves to decrease its inherent damage characteristics of the brittle nature of monolithic ceramics. In this wort, tensile and flexural test for SCS6 fiber/ $Si_3N_4$ matrix composites were studied. An objective of this study is to obtain the basic quantities of mechanical properties for tension and flexural test and link these to the fracture resistance behavior. Then, we showed that wok of fracture concept was useful as a method for describing fracture restance behavior of CFCCs.

  • PDF

Mechanical Properties of $Al_2O_3-AlN$ Particulate Composite ($Al_2O_3-AlN$계 입자복합체의 기계적 성질)

  • 김영우;박홍채;오기동
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.1
    • /
    • pp.101-109
    • /
    • 1996
  • The mechanical propertieso f sintered AlN with the addition of alumina were investigated The flexural strength of the AlN dispersed ALON specimens was higher than that of ALON and fracture toughness showed similar tendency. The high-temperature flexural strength of specimens which 50 and 64.3 mol% alumina was added to AlN was constant up to 100$0^{\circ}C$ with about 290 and 420 MPa respectively but abruptly decreased at 120$0^{\circ}C$ In the specimens which contained 5 and 30mol% alumina the flexural strength increased to about 14% at 100$0^{\circ}C$ and did not decrease at 120$0^{\circ}C$ compared to at room temperature.

  • PDF

Finite Element Analysis and Validation for Mode I Interlaminar Fracture behavior of Woven Fabric Composite For a Train Carbody Using CZM(Cohesive Zone Model) (CZM(Cohesive Zone Model)을 이용한 철도차량용 직물 복합재의 모우드 I 층간파괴의 해석적 연구)

  • Kim, Seung-Chul;Kim, Jung-Seok;Yoon, Hyuk-Jin;Seo, Seung-Il
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.239-246
    • /
    • 2009
  • The Mode I interlaminar fracture toughness of woven fabric carbon/epoxy and glass/epoxy composites for a train carbody was measured and FEM analysis was conducted. The woven fabric epoxy composite manufactured by hand lay-up, has high stiffness and strength, good resistance for impact, fatigue, corrosion and in-plane failure. The DCB(Double Cantilever Beam) specimen made of woven fabric epoxy composite had the size of 180mm $\times$ 25mm $\times$ 5mm and the insert of 65mm. The Mode I interlaminar toughness of specimen was measured according to ASTM 5528-01. The crack propagation behavior of the DCB specimen was simulated using FEA with cohesive elements that model the adhesive layer between woven fabric plies.

  • PDF

Fatigue Crack Growth Behavior of Short fiber/Particle Hybrid Metal Matrix Composites (단섬유/입자 혼합 금속복합재료의 피로균열진전 거동)

  • Oh K.H.;Jang J. H.;Han K. S.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.219-222
    • /
    • 2004
  • The effects of short fiber and particle hybrid reinforcement on fatigue crack propagation behaviors in aluminum matrix composites have been investigated. Single and hybrid reinforced 6061 aluminum containing same 20 $Al_2O_3\;volume\%$ with four different constituent ratios of short fibers and particles were prepared by squeeze casting method and tested to check the near-threshold and stable crack growth behavior. The fatigue threshold of the composites increased with portion of particle contents and showed the improved crack resistance especially in low stress intensity range. Addition of particle instead of short fiber also increased fracture toughness due to increase of inter-reinforcement distance. These increase in both fatigue threshold and fracture toughness eventually affected the fatigue crack growth behavior such that the crack growth curve shift low to high stress intensity factor value. Overall experimental results were shown that particle reinforcement was enhanced the fatigue crack resistance over the whole stress intensity factor range.

  • PDF

Developing Trend of High Strength and Good Toughness Linepipe Steel (고강도-고인성 라인파이프강 개발 동향)

  • Yoo, Jang-Yong;Kang, Ki-Bong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.216-221
    • /
    • 2004
  • Linepipe steels with a low carbon acicular ferrite microstructure have been recently developed to accommodate the current transportation condition of the gas and oil industry, and they are finally applied to West- East pipeline project in China. By adopting acicular microstructure, both better formability and better toughness could be obtained due to low yield ratio and fine grained microstructure. Mechanical properties of pipe are not greatly different from those of base plates or hot coils with a microstructure of acicular ferrite. Merits of introducing higher strength steels are well known, i.e., reducing the gauge of pipe and the material cost, increasing the welding speed and decreasing construction cost because of reducing the construction period. Threfore, gas and oil industry has required higher strength steel than APIX70 grade steel. Under this background, API-X80 steel has been developed and shall be applied to the several projects. In this paper, developing stage of API-X80 steel is also presented and discussed.

  • PDF

Dynamic Stress Intensity Factors and Dynamic Crack Propagation Velocities in Polycarbonate WL-RDCB Specimen (WL-RDCB 시편의 동적 균열전파속도와 동적 응력확대계수)

  • 정석주;한민구
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.3
    • /
    • pp.3-9
    • /
    • 1996
  • Dynamic fracture characteristics of Polycarbonate WL-RDCB specimen were investigated. The dynamic crack propagation velocities in these specimens were measured by using both high speed camera system and silver paint grid method developed and justified in the INHA Fracture Mechanics Laboratory. The measured crack propagation velocities were fed into the INSAMCR code(a dynamic finite element code which has been developed in the INBA Fracture Mechanics Laboratory) to extract the dynamic stress intensity factors. It has been confirmed that both dynamic crack arrest toughness and the static crack arrest toughness depend on both the geometry and the dynamic crack propagation velocity of specimens. The maximum dynamic crack propagation velocity of Polycarbonate WL-RDCB specimen was found to be dependent on the material property, geometry and the type of loading. The dynamic cracks in these Polycarbonate WL-RDCB specimens seemed to propagate in a successive manner, involving distinguished 'propagation-arrest-propagation-arrest' steps on the microsecond time scale. It was also found that the relat-ionship between dynamic stress intensity factor and dynamic crack propagation velocities might be represented by the typical '$\Gamma$'shape.

  • PDF