• 제목/요약/키워드: high tension strength concrete

검색결과 180건 처리시간 0.024초

강섬유보강 고강도 철근콘크리트 부재의 인장강성모델 개발 (Development of Tension Stiffening Models for Steel Fibrous High Strength Reinforced Concrete Members)

  • 홍창우;윤경구;이정호;박제선
    • 콘크리트학회논문집
    • /
    • 제11권6호
    • /
    • pp.35-46
    • /
    • 1999
  • The steel fiber reinforced concrete may affect substantially to the tension stiffening at post cracking behavior. Even if several tension stiffening models exist, they are for plain and normal strength concrete. Thus, the development of tension stiffening models for steel fibrous high strength RC members are necessary at this time when steel fiber reinforced and high strength concretes are common in use. This paper presents tension stiffening effects from experimental results on direct tension members with the main variables such as concrete strength, concrete cover depth, steel fiber quantity and aspect ratio. The comparison of existing models against experimental results indicated that linear reduced model closely estimated the test results at normal strength level but overestimated at high strength level. Discontinuity stress reduced model underestimated at both strength levels. These existing models were not valid enough in applying at steel fibrous high strength concrete because they couldn't consider the concrete strength nor section area. Thus, new tension stiffening models for high strength and steel fiber reinforced concrete were proposed from the analysis of experimental results, considering concrete strength, rebar diameter, concrete cover depth, and steel fiber reinforcement.

콘크리트강도가 인장증강에 미치는 영향에 관한 연구 (Influence of Concrete Strength on Tension Stiffening)

  • 염환석;윤성호;김우
    • 콘크리트학회논문집
    • /
    • 제12권1호
    • /
    • pp.13-22
    • /
    • 2000
  • This paper describes the results obtained from 11 direct tension tests to explore the influence of concrete strength on tension stiffening behavior in reinforced concrete axial members. Three different concrete compressive strengths, 250, 650, and 900kgf/$\textrm{cm}^2$, were included as a main variable, while the ratio of cover thickness-to-rebar diameter was kept constant to be 2.62 to prevent from splitting cracking. As the results, it was appeared that, as higher concrete strength was used, less tension stiffening effect was resulted, and the residual deformation upon unloading was larger. In addition, the spacing between adjacent transverse cracks became smaller with higher concrete strength. The major cause for those results may be attributed to the fact that nonuniform bond stress concentration at both loaded ends and crack sections becomes severer as higher concrete is used, thereby local bond failure becomes more susceptible. From these findings, it would be said the increase in flexural stiffness resulting from using high-strength concrete will be much smaller than that predicted by the conventional knowledge. Finally, a factor accunting for concrete strength was introduced to take account for the effect of HSC on tension stiffening. This proposed equation predicts well the tension stiffening for the effect of HSC on tension stiffening. This proposed equation predicts well the tension stiffening behavior of these tests.

고강도 콘크리트 인장부재의 인장강화효과와 균열거동 (Tension Stiffening Effect and Crack Behavior of Tension Members Using High Strength Concrete)

  • 김지상;박찬혁
    • 한국건설순환자원학회논문집
    • /
    • 제6권1호
    • /
    • pp.50-58
    • /
    • 2018
  • 콘크리트 구조물의 사용성능을 검증하기 위하여 콘크리트와 철근의 상호 합성 작용에 대한 많은 정보가 필요한데, 균열폭 및 균열간격의 평가는 두 재료의 상호작용인 인장강화효과에 근거하여 이루어진다. 이 논문에서는 압축강도 80MPa 및 100MPa의 고강도 콘크리트에 D13 철근을 사용한 인장부재를 제작하여 직접인장실험을 진행하였다. 이를 통해 고강도 콘크리트의 인장강화 효과를 파악하였고 보통강도 콘크리트의 실험결과에 근거한 현행설계기준의 인장강화효과 평가가 부적절함을 확인하였다. 실험결과에 근거하여 고강도 콘크리트 콘크리트의 특성을 적절하게 반영할 수 있는 실험계수를 산정하였다. 또한 균열거동을 통해서 균열간격을 파악하고 이를 통해 고강도 콘크리트의 인장강화효과에 따른 철근변형률과 콘크리트 변형률 차이에 따른 균열폭을 확인하였다. 이 연구의 결과는 향후 고강도 콘크리트 부재의 인장강화 효과를 연구하는 기초자료로 활용될 수 있을 것이다.

Tension Stiffening Effect of High-Strength Concrete in Axially Loaded Members

  • Kim, Woo;Lee, Ki-Yeol;Yum, Hwan-Seok
    • 콘크리트학회논문집
    • /
    • 제15권6호
    • /
    • pp.915-923
    • /
    • 2003
  • This paper presents the test results of total 35 direct tensile specimens to investigate the effect of high-strength concrete on the tension stiffening effect in axially loaded reinforced concrete tensile members. Three kinds of concrete strength 25, 60, and 80 MPa were included as a major experimental parameter together with six concrete cover thickness ratios. The results showed that as higher strength concrete was employed, not only more extensive split cracking along the reinforcement was formed, but also the transverse crack space became smaller. Thereby, the effective tensile stiffness of the high-strength concrete specimens at the stabilized cracking stage was much smaller than those of normal-strength concrete specimens. This observation is contrary to the current design provisions, and the significance in reduction of tension stiffening effect by employment of high-strength concrete is much higher than that would be expected. Based on the present results, a modification factor is proposed for accounting the effect of the cover thickness and the concrete strength.

콘크리트가 RC 인장부재의 인장거동에 미치는 영향 (Effect of Concrete on the Tension Behavior of RC Members)

  • 홍창우;김남윤;윤경구;이봉학
    • 산업기술연구
    • /
    • 제17권
    • /
    • pp.145-151
    • /
    • 1997
  • This paper presents evaluation results of the tensile behavior of reinforced high strength concrete. The effects of different sizes of reinforcing bar, ranging from D22 to D29, on the formation of cracks was investigated. Two different strength concretes, $270kg/cm^2$ and $550kg/cm^2$, were used in the specimens to investigate the influence if concrete strength on tension stiffening. In the present investigation a method was developed to obtain reliable load-deformation behavior in tension. The experimental results show that (1)high-strength concrete members exhibited larger amounts of tension stiffening than the companion normal-strength concrete members, (2) as the bar diameter increases, the beneficial influence of high-strength concrete on tension stiffening is reduced.

  • PDF

고강도 콘크리트와 고장력 철근을 적용한 쉴드 세그먼트의 역학적 거동에 대한 실험적 연구 (An experimental study on mechanical behavior of shield segment with high-strength concrete and high-tension rebar)

  • 이규필;박영택;최순욱;배규진;장수호;강태성;이진섭
    • 한국터널지하공간학회 논문집
    • /
    • 제14권3호
    • /
    • pp.215-230
    • /
    • 2012
  • 본 연구에서는 세그먼트의 제작비용을 절감하기 위한 방안으로서, 설계강도가 60 MPa인 고강도 콘크리트와 항복강도가 600 MPa인 고장력 철근을 사용하여 철근량을 저감시킨 고강도 철근보강 세그먼트 시작품을 제작하였다. 이상과 같이 제작된 고강도 세그먼트와 기존 철근보강 세그먼트의 역학적 거동을 비교하기 위하여, 세그먼트의 실물 휨실험을 실시하였다. 실험결과, 철근량이 약 26%가 감소하였음에도 불구하고 고강도 철근보강 세그먼트의 파괴하중은 일반 철근보강 세그먼트보다 약 30% 크게 나타나 고강도 콘크리트와 고장력 철근으로 인해 세그먼트의 내하력이 크게 향상되었음을 확인하였다.

고강도 콘크리트의 인장강성효과에 대한 연구 (Tension Stiffening Effect of High Strength Concrete)

  • 윤성호;김준성;염환석;김우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표논문집(II)
    • /
    • pp.495-500
    • /
    • 1998
  • This paper describes an experimental investigation on the effect of concrete strength on tension stiffening behavior. Total ten direct tension specimens were tested with concrete compressive strength range up to 900kg/$\textrm{cm}^2$. From the experimental program, it was observed that higher strength concrete specimens provides smaller crack spacings and less stiffening effect.

  • PDF

Long-term deflection of high-strength fiber reinforced concrete beams

  • Ashour, Samir A.;Mahmood, Khalid;Wafa, Faisal F.
    • Structural Engineering and Mechanics
    • /
    • 제8권6호
    • /
    • pp.531-546
    • /
    • 1999
  • The paper presents an experimental and theoretical study on the influence of steel fibers and longitudinal tension and compression reinforcements on immediate and long-term deflections of high-strength concrete beams of 85 MPa (12,300 psi) compressive, strength. Test results of eighteen beams subjected to sustained load for 180 days show that the deflection behavior depends on the longitudinal tension and compression reinforcement ratios and fiber content; excessive amount of compression reinforcement and fibers may have an unfavorable effect on the long-term deflections. The beams having the ACI Code's minimum longitudinal tension reinforcement showed much higher time-dependent deflection to immediate deflection ratio, when compared with that of the beams having about 50 percent of the balanced tension reinforcement. The results of theoretical analysis of tested beams and those of a parametric study show that the influence of steel fibers in increasing the moment of inertia of cracked transformed sections is most pronounced in beams having small amount of longitudinal tension reinforcement.

고강도 콘크리트 보에서 Tension Stiffening 모델을 이용한 실험적 연구 및 평가 (Experimental Study and Evaluation of Tension Stiffening Model in High Strength Concrete Beams)

  • 신대환;조은선;김민숙;김희철;이영학
    • 한국전산구조공학회논문집
    • /
    • 제27권1호
    • /
    • pp.45-53
    • /
    • 2014
  • 강도 한계상태 설계에서는 균열이 일어난 이후 철근콘크리트 부재의 인장영역에서 철근이 모든 인장력을 부담하는 것으로 가정한다. 그러나 균열 사이의 콘크리트가 실제 콘크리트 부재에서는 특히 사용하중 수준에서의 어느 정도의 인장 응력을 견디는데, 일조 하는 것으로 보고 있다. 이러한 효과를 Tension stiffening 효과라 한다. 본 연구에서는 Tension stiffening 모델과 고강도 철근 콘크리트 보의 휨 실험결과의 비교를 통해 해석모델의 유효성을 평가 하고자 한다. 이를 통해 선정 된 6가지의 Tension stiffening 모델과 실험에 의한 모멘트-곡률, 하중-처짐등을 관계를 평가하였다. 실험결과 설계기준에서는 ACI 318이 Tension stiffening 모델에서는 Owen & Damjanic이 실험 값과 가장 적은 오차율을 보이며 높은 신뢰도를 보였다.

Nonlinear finite element analysis of high strength concrete slabs

  • Smadi, M.M.;Belakhdar, K.A.
    • Computers and Concrete
    • /
    • 제4권3호
    • /
    • pp.187-206
    • /
    • 2007
  • A rational three-dimensional nonlinear finite element model is described and implemented for evaluating the behavior of high strength concrete slabs under transverse load. The concrete was idealized by using twenty-nodded isoparametric brick elements with embedded reinforcements. The concrete material modeling allows for normal (NSC) and high strength concrete (HSC), which was calibrated based on experimental data. The behavior of concrete in compression is simulated by an elastoplastic work-hardening model, and in tension a suitable post-cracking model based on tension stiffening and shear retention models are employed. The nonlinear equations have been solved using the incremental iterative technique based on the modified Newton-Raphson method. The FE formulation and material modeling is implemented into a finite element code in order to carry out the numerical study and to predict the behavior up to ultimate conditions of various slabs under transverse loads. The validity of the theoretical formulations and the program used was verified through comparison with available experimental data, and the agreement has proven to be very good. A parametric study has been also carried out to investigate the influence of different material and geometric properties on the behavior of HSC slabs. Influencing factors, such as concrete strength, steel ratio, aspect ratio, and support conditions on the load-deflection characteristics, concrete and steel stresses and strains were investigated.