• Title/Summary/Keyword: high tensile steel

Search Result 1,068, Processing Time 0.029 seconds

Long-term flexural cracking control of reinforced self-compacting concrete one way slabs with and without fibres

  • Aslani, Farhad;Nejadi, Shami;Samali, Bijan
    • Computers and Concrete
    • /
    • v.14 no.4
    • /
    • pp.419-444
    • /
    • 2014
  • In this study experimental result of a total of eight SCC and FRSCC slabs with the same cross-section were monitored for up to 240 days to measure the time-dependent development of cracking and deformations under service loads are presented. For this purpose, four SCC mixes are considered in the test program. This study aimed to compare SCC and FRSCC experimental results with conventional concrete experimental results. The steel strains within the high moment regions, the concrete surface strains at the tensile steel level, deflection at the mid-span, crack widths and crack spacing were recorded throughout the testing period. Experimental results show that hybrid fibre reinforced SCC slabs demonstrated minimum instantaneous and time-dependent crack widths and steel fibre reinforced SCC slabs presented minimum final deflection.

Study on Prediction of Mechanical Joining Strength of Blow Motor Case Joint (블로우 모터 케이스 이음부 기계적 결합 강도 예측에 관한 연구)

  • Kim, Gug-Yong;Kwon, Il-Keun;Park, Jun-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.1
    • /
    • pp.81-87
    • /
    • 2017
  • In order to reduce the weight of the blow motor case and to maintain the strength of the motor joint, the mechanical joining strength is to be predicted. The true stress - true strain curves for finite element analysis were obtained through tensile tests of HGI and DP 780 steel. The mechanical joining strength was predicted through an explicit finite element analysis and the accuracy of the predicted results was verified by actual sample test. The regression equation for predicting the mechanical joining strength to the thickness of the DP 780 steel was derived. The minimum thickness of DP 780(1.2mm), which is equivalent to the joining strength of HGI(2.6mm), was derived from the equation.

A Study on the $CO_2$ Laser Beam Welding of Thin Steel Sheets and Tailored Blanks - Between Similar Thin Sheet Materials - (박판의 $CO_2$레이저 빔 용접과 소재접합일체성형에 관한 연구- 동질 박판재간 -)

  • 이희석;배동호
    • Journal of Welding and Joining
    • /
    • v.15 no.2
    • /
    • pp.54-63
    • /
    • 1997
  • For the purpose of establishing laser welding condition (laser power, welding speed and beam focus) and of evaluating tailored blanks for two kinds of thin steel sheets SPCC and SK5M using in the thin plate structure such as automobile, train, and so on, investigated their $CO^2$ laser weldability under various initial welding conditions. SPCC thin sheet showed good weldability under some welding conditions. But, high carbon steel sheet SK5M needed heat treatment after welding to obtain ductility of the welded joint. And next, tailored blank was tested through deep drawing to evaluate reliability of their obtained laser welding conditions. The forming depths by tailored blank were SPCC+SPCC=22-25mm and SK5M+SK5M=13-25mm.

  • PDF

Effect of Laser Welding Variables on the Formability of Si Added Steel Welds (3wt% Si 첨가강의 레이저용접부 성형성에 미치는 용접변수의 영향)

  • Park, Joon-Sik;Woo, In-Su;Lee, Jong-Bong
    • Journal of Welding and Joining
    • /
    • v.24 no.4
    • /
    • pp.15-21
    • /
    • 2006
  • The aim of present study is to investigate the effect of welding parameters and heat treatment conditions on the formability of the $CO_2$ laser welded silicon steel sheet. It was found that there is optimum range of the heat input ($0.6{\sim}0.7kJ/cm$) and gap distance ($0.125{\sim}0.150mm$) for the high tensile strength and the avoidance of the fracture in weld metal. Also, it was essential fur the improvement of formability to perform pre- and post-welding heat treatment which cause the uniform mixture of base metal and welding consumable.

Temperature Crack Control Foundation in LG IPP Project (부공복합화력발전소 기계기초의 오돈균열제어)

  • 양주경;조경연;심재홍
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.309-312
    • /
    • 2000
  • Nonuniform temperature distribution due to hydration heat induces thermal stress in mass concrete. At early ages, such thermal stress may induce thermal cracks which can affect on the durability ad safety of the structure. Steel fiber reinforced concrete may be useful when a large amount of energy has to be absorbed, when a high tensile strength and reduced cracking are desirable, of an improvement of thermal conductivity is desirable. In LG IPP Project, the upper part(50cm) of turbine foundation was replaced with steel fiber reinforced concrete to reduce the thermal crack induced by hydration heat. It was shown that the thermal crack control could be successfully achieved by steel fiber reinforced concrete.

  • PDF

A Study on the Mechanical Characteristics of Ho1low Type Glass Fiber Reinforced Plastics Re-bar (중공형 GFRP리바의 기계적 특성에 관한 연구)

  • 한길영;이동기;오환교;홍석주;신용욱;배시연
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.7-11
    • /
    • 2000
  • In this paper was studied on the mechanical characteristics of Glass Fiber Reinforced Plastics(GFRP) of the steel bar it is to replace. The advantage of FRP such as high strength, low weight and chemical inertness or noncorrosiveness can be fully exploited. GFRP bar were successfully fabricated at l0mm nominal diameters of solid and hollow types using a pultrusion method. Tensile and bending specimens from this bar were tested and compared with behavior of GFRP rebar and steel bar.

  • PDF

Recent Trends in Ferrous PM Materials in Japan

  • Takajo, Shigeaki
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1993.11a
    • /
    • pp.4-4
    • /
    • 1993
  • Ferrous powder metallurgy in Japan has developed in the last four decades, where every decade is featured by certain breakthroughs in materials. The progress in PM materials is closely related to newly developed powders. Low alloy steel powders for high strength PM components are grouped into three types: Ni and/or Mo containing completely alloyed powders, Ni containing partially alloyed powders, and Cr containing completely alloyed powders. Every type has its special characteristics. The tensile strength of PM materials is improved up to 2 GPa. The hardness is also increased to exceed 500 HV with normal hardening methods, and 700 HV with novel surface treatment techniques. The present maximum of fatigue strength is 550 MPa, and that of impact energy is 100 J. Novel PM materials with improved properties are applied to a variety of automobile and other components: power steering pumps, rocker anns, valve guides and inserts, bearings, torque sensors, etc. The future outlook for the ferrous PM is Quite positive, and the industry is expected to show renewed growth by applying many types of alloy steel powders and new ferrous PM materials.

  • PDF

An Experimental Study on the Development of Hybrid Discontinuous Fiber Reinforced Cementitious Composite (하이브리드형 단섬유보강 시멘트복합재료의 개발에 관한 실험적 연구)

  • 김영덕;조봉석;김재환;김용로;윤현도;김무한
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.57-60
    • /
    • 2003
  • Generally, normal concrete has the disadvantages of low tensile strength, low ductility and volume instability. To improve its performance, fiber reinforced cimentitious composite(FRCC) have been development. These composites are composed of cement, sand, water, a small amount of admixtures, and an optimal amount of fiber like synthetic fiber and steel fiber. This research investigates influence of sand, hybrid fiber and fiber volume fraction, and reports the test results of mechanical properties, fracture behavior and failure pattern of the FRCC. Our experiment was observed that sand mixed FRCC has lower compressive strength and higher bending strength than no sand mixed FRCC, and more steel fiber mixed FRCC has higher compressive strength and bending strength. Hybrid FRCC of steel and polypropylene had superior properties than FRCC of polypropylene only in same fiber volume fraction.

  • PDF

Scaling and Dynamic Effects on the Plate Cutting Response (판의 찢김 응답에 대한 치수 및 동적 효과)

  • 백점기;이탁기
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.3
    • /
    • pp.48-55
    • /
    • 1996
  • The aim of the present study is to investigate the scaling and dynamic erects on the plate cutting response. A series of cutting tests for unstiffened and longitudinally stiffened steel plate specimens in a quasi-static condition were carried out, varying the plate thickness. Based on the previous as well as the present test results, the scaling effect of Plate thickness on the cutting response is investigated. Dynamic erects are also clarified from the devious theoretical and experimental results. The Cowper-Symonds constitutive equation originally derived for mild steel is modified to consider the influence of strain-rate sensitivity on yield strength of high tensile steel.

  • PDF

Development of Smart Tendon Instrumented with Optical FBG Sensors (FBG 센서를 내장한 스마트 강연선 개발)

  • Kim, Jae-Min;Kim, Young-Sang;Kim, Hyoun-Wo;Seo, Dong-Nam;Yun, Chung-Bang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.33-38
    • /
    • 2007
  • This paper reports an attempt to develop 7-wire steel tendon which is instrumented with optical FBG sensors. The tendon is devised to replace the king cable, which is located in the center of the tendon, by a steel tube in which the FBG sensor are attached along the hole using a high-mobility polyester resin. The circular steel tube has typical of 5 mm outer diameter and 1 mm inner diameter, and can easily be manufactured by means of an pultrusion process. Using the tube, in this study, three different types of one meter-long smart tendons are fabricated depending on mixture ratio of polyester resin and initiator. The performance of the FBG sensors as well as mechanical characteristics of the prototype are tested through the tensile test. Test results shows that the proposed smart tendon is in principle very effective for measuring the working strain of the tendon.

  • PDF