• Title/Summary/Keyword: high tensile steel

Search Result 1,068, Processing Time 0.029 seconds

Statistical models for mechanical properties of UHPC using response surface methodology

  • Mosaberpanah, Mohammad A.;Eren, Ozgur
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.667-675
    • /
    • 2017
  • One of the main disadvantages of Ultra High Performance Concrete exists in the large suggested value of UHPC ingredients. The purpose of this study was to find the models mechanical properties which included a 7, 14 and 28-day compressive strength test, a 28-day splitting tensile and modulus of rupture test for Ultra High Performance Concrete, as well as, a study on the interaction and correlation of five variables that includes silica fume amount (SF), cement 42.5 amount, steel fiber amount, superplasticizer amount (SP), and w/c mechanical properties of UHPC. The response surface methodology was analyzed between the variables and responses. The relationships and mathematical models in terms of coded variables were established by ANOVA. The validity of models were checked by experimental values. The offered models are valid for mixes with the fraction proportion of fine aggregate as; 0.70-1.30 cement amount, 0.15-0.30 silica fume, 0.04-0.08 superplasticizer, 0.10-0.20 steel fiber, and 0.18-0.32 water binder ratio.

Heat Distribution Characteristics of High Tensile Steel for Ship Structures in Laser Welding (선체고장력강 레이저 용접부의 열분포 특성에 관한 연구)

  • 방한서;윤병현;김성주;임채환
    • Journal of Welding and Joining
    • /
    • v.21 no.3
    • /
    • pp.30-34
    • /
    • 2003
  • This paper describes the heat distribution characteristics of ASTM A131DH36 high tensile steel for ship structures in 5㎾ $CO_2$ laser welding. In general, high energy of laser beam concentrates on the small area of the weldment instantaneously; therefore, this heat transfer mechanism induces the rapid changes of temperature and mechanical characteristics in laser welds this mechanism. So temperature distribution analysis is important to understand mechanical characteristics of laser welds. Authors have conducted finite element simulation to analyze the heat distribution characteristics in laser welds. The result of simulation has been verified by comparing with the metallurgical experiment result. From the result of this study, we can accurately predict the heat distribution characteristics in laser welds by using numerical simulation.

Effect of Welding Speed on the Microstructure and Mechanical Properties of Austenitic Stainless Steel Welds

  • Li, C.;Jeong, H.S.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.1
    • /
    • pp.23-28
    • /
    • 2003
  • The effect of the welding speeds on the weld bead shape, microstructure, and mechanical properties in type 304 austenitic stainless steels was investigated by microscopic test, Erichsen test and tensile test. In this study welds were produced using autogeneous Direct Current Straight Polarity (DCSP) and pulsed current GTA welding. This study shows the ferrite content, ductility, tensile strength and elongation of high speed welds are decreased with increasing welding speed. The high speed welds exhibits satisfactory tensile strength, though the ductility is not good as that of the base metal.

  • PDF

Effect of Annealing Temperature and Alloying Elements on the Mechanical Properties of Fe-Mn-C TWIP Steels (Fe-Mn-C계 TWIP강의 재질특성에 미치는 소둔온도와 첨가원소의 영향)

  • Jung, Jong-Ku;Kim, Nam-Kyu;Yeon, Yeo-Sun;Kim, Hyun-Ho;Lee, Oh-Yeon
    • Korean Journal of Materials Research
    • /
    • v.20 no.7
    • /
    • pp.385-391
    • /
    • 2010
  • Twinning-induced plasticity (TWIP) steels have attracted great attention due to their excellent mechanical properties of high tensile strength (over 800MPa) and high ductility (over 50%), which result from the high strain hardening due to the mechanical twin formation during plastic deformation. The purpose of this study is to investigate the effect of annealing temperature and alloying elements on the mechanical properties of Fe-18Mn-0.6C TWIP steel. In 1.5%Al TWIP steel with 0.123%Ti content, the average recrystallized grain size was reduced to 2.5 ${\mu}m$ by cold rolling and annealing at $800^{\circ}C$ for 5 min, because of the pinning effect of the fine TiC carbides on grain coarsening. The tensile strength was decreased and the ductility was improved with the increase of the annealing temperature. However, a reversion of hardness and yield strength happened between $750^{\circ}C$ and $800^{\circ}C$ due to TiC and $M_3C$ type precipitation. 0.56% Ni added TWIP steel exhibited relatively lower yield strength, because Ni precipitates were not formed during the annealing process. When this specimen was annealed at $800^{\circ}C$ for 5min, the tensile strength and elongation were revealed at 1096MPa and 61.8%, respectively.

W/C Ratio Effects on Mechanical Properties of High Performance hybrid SC and PE Fibers Reinforced Cement Composites (물-시멘트비에 따른 하이브리드 섬유보강 고인성 시멘트 복합체의 역학적 특성)

  • Yun, Hyun-Do;Kim, Sun-Woo;Cheon, Esther;Lee, Sang-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.118-121
    • /
    • 2006
  • The research reported here is concerned with the effects of the fiber combination condition and water/cement ratio on the mechanical properties of high performance fiber-reinforced cementitious composites(HPFRCC). An experimental investigation of the behavior of steel cords(SC) and SC and Polyethylene(PE) hybrid fiber reinforced cementitious material under compressive and tensile loading is presented. In this experimental research, the tensile and compressive strength and strain capacity of HPFRCC were selected using the cylindrical specimens. The results show that W/C ratio is a significant effect factor on the compressive and tensile performance of HPFRCC. The envelope curve concept applies to hybrid fiber-reinforced cementitious composites in tension just as it does to compressive stress-strain curve of fiber-reinforced cement composites. For practical purposes, the tensile envelope curve may be taken to be the same as the monotonic tensile stress-strain curve.

  • PDF

Effect of Strain Rate on the Mechanical Properties of High Performance Fiber-Reinforced Cementitious Composites (재하속도에 따른 고성능 섬유보강 시멘트 복합체의 역학적 특성)

  • Yun Hyun-Do;Yang Il-Seung;Han Byung-Chan;Hiroshi Fukuyama;Cheon Esther;Kim Sun-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.29-32
    • /
    • 2004
  • An experimental investigation of the behavior of steel cords(SC) and SC and Polyethylene(PE) hybrid fiber reinforced cementitious material under compressive and tensile loading is presented. In this experimental research, the tensile and compressive strength and strain capacity of high performance fiber-reinforced cementitious composites(HPFRCC) were selected using the cylindrical specimens. Uniaxial compressive and tensile tests have also been carried out at varying strain rates to better understand the behavior of. HPFRCC and propose the standard loading rate for compressive and tensile tests of new HPFRCC materials. The results show that there is a substantial increase in the ultimate compressive and tensile strength with increasing strain rate.

  • PDF

Wear Behavior of TiN Coatings Deposited on High Speed Steel and Alloy Tool Steel (TiN 코팅된 고속도강과 합금공구강의 마멸거동)

  • 김석삼;서창민;박준목
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.705-712
    • /
    • 1995
  • The wear characteristics and wear mechanisms in TiN coating deposited on high speed steel and alloy tool steel by ion plating were investigated. Pin on V-block wear tester was used for a wear test method. The specimen was composed of three kinds of high speed steel and alloy tool steel which had different hardness by changing the heat treating condition. Three kinds of coating thickness were also applied to each specimen. Microscopic observation of worn surfaces was made by SEM. The scratch test of coating surface by the ion plating showed that critical load to break the coating interface was greater than 50N. The critical load increased with both substrate hardness and coating thickness. The wear resistance of TiN coated high speed steel became 10 times greater than that of non-coated ones. SEM observation showed that leading edge of contact was compressive and trailing edge was under maximum tensile stress and then surface cracking broke out perpendicular to sliding direction.

Tensile and impact toughness properties of various regions of dissimilar joints of nuclear grade steels

  • Karthick, K.;Malarvizhi, S.;Balasubramanian, V.;Krishnan, S.A.;Sasikala, G.;Albert, Shaju K.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.116-125
    • /
    • 2018
  • Modified 9Cr-1Mo ferritic steel is a preferred material for steam generators in nuclear power plants for their creep strength and good corrosion resistance. Austenitic stainless steels, such as type 316LN, are used in the high temperature segments such as reactor pressure vessels and primary piping systems. So, the dissimilar joints between these materials are inevitable. In this investigation, dissimilar joints were fabricated by the Shielded Metal Arc Welding (SMAW) process with Inconel 82/182 filler metals. The notch tensile properties and Charpy V-notch impact toughness properties of various regions of dissimilar metal weld joints (DMWJs) were evaluated as per the standards. The microhardness distribution across the DMWJs was recorded. Microstructural features of different regions were characterized by optical and scanning electron microscopy. Inhomogeneous notch tensile properties were observed across the DMWJs. Impact toughness values of various regions of the DMWJs were slightly higher than the prescribed value. Formation of a carbon-enriched hard zone at the interface between the ferritic steel and the buttering material enhanced the notch tensile properties of the heat-affected-zone (HAZ) of P91. The complex microstructure developed at the interfaces of the DMWJs was the reason for inhomogeneous mechanical properties.

Experimental Study on Tensile Fatigue Strength of the High Strength Bolts (고장력볼트의 인장피로강도에 관한 실험적 연구)

  • Han, Jong Wook;Park, Young Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.165-170
    • /
    • 2008
  • New high strength bolts are required due to the development of the high strength steel, the ultra-thick steel plates, and the long-span bridge, though high strength bolts with tensile strength of 1,000 MPa are mainly used in construction site of every country. The high strength bolts are often subjected to a repeated tension-type of loading in which the fatigue failure is a major mode of failure. However, the theoretical and experimental study for the fatigue failure of tension bolt has not been well established in Korea. In this study, we performed a tensile fatigue test of F8T, F10T and F13T, F13T-N high strength bolts under tension. We proposed three fatigue strength specifications by performing 95% survival probability analysis for F8T, F10T, F13T, and F13T-N bolt under the $2{\times}10^6$ cycles of repeated loading. And the fatigue strength for the advanced screw thread shape bolt developed in this study are compared with the previous KS screw thread shape bolt.

High Fatigue Life and Tensile Strength Characteristics of Low Activation Ferritic Steel(JLE-1) by TIG Welding (TIG용접한 저방사화 페라이트강(JLF-1)의 고온강도 및 피로수명특성)

  • Yoon, H.K.;Lee, S.P.;Kim, S.W.;Park, W.J.;Kohyama, A.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.181-186
    • /
    • 2001
  • JLF-1 steel (Fe-9Cr-2W-V-Ta), low activation ferritic steel, is one of the promising candidate materials fer fusion reactor applications. High temperature fatigue life and tensile strength of JLF-1 steel and its TIG welded joints were investigated at the room temperature and $400^{\circ}C$. The strength of base metal (JLF-1) is in between those of weld metal and the HAZ. When the test temperature was increased from room temperature to $400^{\circ}C$, both strength and ductility decreased for base metal, weld metal and the HAZ. The longitudinal specimens of base metal showed similar strength and ductility compared with those of the transverse specimens at room temperature and $400^{\circ}C$. Little anisotropy was observed in the JLF-1 steel base metal in terms of rolling direction. Fatigue limit of weld metal which was obtained from cross-weld specimen is 495MPa. Thus, the weld metal showed the higher fatigue limit than those of base metal at both room temperature and $400^{\circ}C$. Little anisotropy of fatigue properties was observed for JLF-1 base metal in terms of rolling direction. When the test temperature was increased from room temperature to $400^{\circ}C$, the fatigue limit of both base metal and weld metal decreased substantially.

  • PDF