• Title/Summary/Keyword: high tensile steel

Search Result 1,068, Processing Time 0.023 seconds

Effect of Cr on Mechanical Properties and Microstructure in 0.27% C-1.0% Si-1.5% Mn Steel (0.27% C-1.0% Si-1.5% Mn 강의 미세조직과 기계적성질에 미치는 Cr의 영향)

  • Jeong, Woo Chang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.4
    • /
    • pp.181-189
    • /
    • 2016
  • The variation in microstructure and mechanical properties during heat treatment was examined in a series of 0.27% C-1.0% Si-1.5% Mn steels with chromium contents in the range of 0 to 1.0 wt%. It was found that chromium decreased the martensite packet size through the austenite grain refinement and increased tensile strength in the as-quenched steel, about 70 MPa per 1.0 wt%. The 0.27% C-1.0% Si-1.5% Mn-1.0% Cr steel showed tensile strength of 1700 MPa in the as-quenched steel. The 0.27% C-1.0% Si-1.5% Mn-1.0% Cr steel revealed a full martensitic structure after air cooling from $900^{\circ}C$ to room temperature, showing air hardening characteristics. Tempering at $150^{\circ}C$ slightly decreased the tensile strength and increased elongation, which is in a good agreement with impact toughness result.

Influence of dynamic strain aging on material strength behavior of virgin and service-exposed Gr.91 Steel (신재 및 가동이력 Gr.91강의 재료강도 거동에 미치는 동적변형시효의 영향)

  • Ki-Ean Nam;Hyeong-Yeon Lee;Jae-Hyuk Eoh;Hyungmo Kim;Hyun-Uk Hong
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.20 no.1
    • /
    • pp.66-74
    • /
    • 2024
  • This study investigates the effects of temperatures and strain rates on the strength and ductility of Gr.91 (ASME Grade 91) steel which is widely being used as a heat-resistant material in Generation IV nuclear and super critical thermal power plants. The tensile behavior of modified 9Cr-1Mo (Gr.91) steel was studied for the three strain rates of 6.67×10-5/s, 6.67×10-4/s and 6.67×10-3/s over the temperature range from room temperature (RT) to 650℃. Experimental results showed that at specific combinations of temperatures (300~400℃) and strain rates, serrations appeared in the stress-strain curves. Concurrently, abnormal behaviors such as a plateau in yield strength and tensile strength, a minimum in ductility and negative strain rate sensitivity were observed. These phenomena were analyzed as significant characteristics of dynamic strain aging (DSA). Since this abnormal behavior in Gr.91 steel affects the material strength, it is judged that a correlation analysis between DSA and material strength should be crucial in the design and integrity evaluation of Gr. 91 steel pressure vessel and piping subjected to high-temperature loading.

Revision on Material Strength of Steel Fiber-Reinforced Concrete

  • Karl, Kyoung-Wan;Lee, Deuck-Hang;Hwang, Jin-Ha;Kim, Kang-Su;Choi, Il-Sup
    • International Journal of Concrete Structures and Materials
    • /
    • v.5 no.2
    • /
    • pp.87-96
    • /
    • 2011
  • Many studies have been performed on steel fiber-reinforced normal/high-strength concrete (SFRC, SFRHC) for years, which is to improve some of the weak material properties of concrete. Most of equations for material strengths of SFRHC, however, were proposed based on relatively limited test results. In this research, therefore, the material test results of SFR(H)C were extensively collected from literature, and material tests have conducted on SFR(H)C; compressive strength tests, splitting tensile tests, and modulus of rupture tests. Based on the extensive test data obtained from previous studies and this research, a database of SFR(H)C material strengths has been established, and improved equations for material strengths of SFR(H)C were also proposed. Test results showed that both the splitting tensile strength and the modulus of rupture of SFR(H)C increased as the volume fraction of steel fiber increased, while the effect of the steel fiber volume fraction on the compressive strength of SFR(H)C were not clearly observed. The proposed equations for the splitting tensile strength and the modulus of rupture of SFR(H)C showed better results than the previous equations examined in this study in terms of not only accuracy but also safety/reliability.

Grain Size Dependence of Tensile Deformation at Room Temperature of a Reversely Transformed Fe-Cr-Mn Transformation Induced Plasticity aided Stainless Steel (역변태 Fe-Cr-Mn계 변태유기소성 스테인레스강의 결정립 크기에 따른 상온인장변형 거동)

  • J. Y. Choi;K-T. Park
    • Transactions of Materials Processing
    • /
    • v.32 no.2
    • /
    • pp.53-60
    • /
    • 2023
  • A wide range of grain size was achieved in a Fe-Cr-Mn austenitic stainless steel (STS) by cold rolling and reversion annealing. The tensile characteristics of the STS were analyzed in terms of the dependence of strain induced martensitic (SIM) transformation on the grain size. In the ultrafine grain regime, the steel showed a high yield strength over 1 GPa, a discontinuous yielding, and a prolonged yield point elongation followed by considerable strain hardening. By increasing the grain size, the discontinuous yielding diminished and the yield point elongation decreased. The microstructural examination revealed that these tensile characteristics are closely related to the suppression of SIM transformation with decreasing the grain size. Especially, the prolonged yield point elongation of the ultrafine grained STS was found to be associated with development of unidirectional ε martensite bands. Based on the microstructural examination of the deformed microstructures, the rationalization of the grain size dependence of SIM transformation was suggested.

Control of Tensile Behavior of Ultra-High Performance Concrete Through Artificial Flaws and Fiber Hybridization

  • Kang, Su-Tae;Lee, Kang-Seok;Choi, Jeong-Il;Lee, Yun;Felekoglu, Burak;Lee, Bang Yeon
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.sup3
    • /
    • pp.33-41
    • /
    • 2016
  • Ultra-high performance concrete (UHPC) is one of the most promising construction materials because it exhibits high performance, such as through high strength, high durability, and proper rheological properties. However, it has low tensile ductility compared with other normal strength grade high ductile fiber-reinforced cementitious composites. This paper presents an experimental study on the tensile behavior, including tensile ductility and crack patterns, of UHPC reinforced by hybrid steel and polyethylene fibers and incorporating plastic beads which have a very weak bond with a cementitious matrix. These beads behave as an artificial flaw under tensile loading. A series of experiments including density, compressive strength, and uniaxial tension tests were performed. Test results showed that the tensile behavior including tensile strain capacity and cracking pattern of UHPC investigated in this study can be controlled by fiber hybridization and artificial flaws.

Analysis and Environment on Bond Characteristic of High-Strength Steel RC Members (고장력 철근을 사용한 RC부재의 부착특성에 관한 해석 및 실험)

  • 곽성태;윤영수;송영철;우상균
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.443-448
    • /
    • 2001
  • This paper presents a bond characteristics of high strength steel reinforced concrete members. High strength steel is what yield strength is higher than that of normal strength steel. So, the amount of flexural steel needed in R.C. members can be decreased. In result, it is expected that the workability and structure quality can improve and man power can minimize. For this purpose, specimens were made and tested with experimental parameters, such as concrete strength, steel diameter and yield strength. The result showed that under same tensile force of steel, in case of substituting normal strength steel with high strength steel, maximum bond stress increased and development length didn't almost change. In addition, the governing equation of bond and bond stress verse slip relationship were derived and compared with test values such as maximum bond stress, slip and bond stiffness.

  • PDF

Evaluation of Fire Resistance Using Mechanical Properties at High Temperature for Steel Column Made of Rolled Steels (SS 400) (구조용 압연강(SS 400)의 고온 기계적 특성을 이용한 기둥부재의 내화성능 평가)

  • Kwon, In-Kyu;Shin, Soon-Gi
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.9
    • /
    • pp.671-677
    • /
    • 2011
  • Steel columns used in steel buildings are inclined to lose their strength when exposed to severe fire conditions, so fire resistance is required in most countries to protect against loss of life and building collapses. In Korea, the fire resistance of columns can be obtained by the fire test defined in KS F 2257-1, 7. The fire resistance of a steel column should be evaluated in terms of the column's conditions, such as various section types (H-section, hollow-section), the column's length and boundary conditions, and whether it is fixed or hinged. However, fire testing of steel columns is usually conducted on one standard-sized H-section over 3,000 mm, and the result is used as the column's fire resistance. This is not a reasonable way to ensure that a building can withstand fire conditions. In this study, to evaluate the possibility of calculating the fire resistance of steel columns with material properties of high tensile strength of SS 400, both load-bearing fire tests and calculation of steel temperatures were carried out. The results of temperature calculation were very similar to those obtained by fire test.

The Effects of Mixture Rate and Aspect Ratio of Steel Fiber on Mechanical Properties of Ultra High Performance Concrete (강섬유 혼입율 및 형상비가 초고강도 콘크리트의 역학적 성질에 미치는 영향)

  • Choi, Jung-Gu;Lee, Gun-Cheol;Koh, Kyung-Taek
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.14-20
    • /
    • 2017
  • Ultra high performance concrete is inevitably used in case of skyscraper and super long span bridge. In general, the flexural and the tensile strengths of concrete are lower than the compressive strength, so brittle cracks occur and energy absorption ability is lowered. In order to solve this problem, this study is intended to examine the effect of the steel fiber volume fraction and aspect ratio on the mechanical properties of ultra high performance concrete. In series I, 20-mm straight steel fiber was added with a volume fraction of 0, 1.0, 1.3, 1.5 and 2.0%. In series II, 16-mm steel fiber was added with a volume fraction of 0, 1, and 1.5%, and then mechanical properties were examined according to aspect ratio. In the results of experiment, a difference in compressive strength was insignificant. However, regarding the flexural strength and tensile strength, as the volume fraction and aspect ratio increased, flexural performance and tensile performance improved.

Study on the Development of 340MPa Grade Super Formable High Strength Steel Sheets (340MPa 급 초고성형성 고강도강판 개발에 관한 연구)

  • Kim, Yong-Hee;Lee, Young-Soo;Lee, Oh-Yeon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.48-54
    • /
    • 2009
  • The demand for formable high-strength steel (HSS) sheets has recently increased to reduce the weight of automotive bodies. The 340MPa (Tensile Strength) grade steel sheets are widely used for body inner and outer panels. Especially, super formable 340MPa grade steel sheets with high r-value have an excellent deep drawability compared with the other 340MPa grade steel sheets. It is very available for a part such as rear floor, center floor and dash panels used conventional mild steels up to now. We developed a super formable HSS by optimization of chemical composition, texture control and heat treatment control. It has good mechanical properties with excellent formability (tensile strength: 343MPa, elongation: 41.1% and $\bar{r}=2.1$).

Effect of Process Variables on the Flash Butt Welding of High Strength Steel

  • Kim, Y.S.;Kang, M.J.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.2
    • /
    • pp.24-28
    • /
    • 2003
  • This study was aimed to evaluate the quality of flash welded joints and optimize the welding process for flash butt welding of 780MPa grade high strength steel. And then the relationship between the welding process variables and the joint quality would be established. The effect of process variables between flashing and upsetting process was elucidated. Microstructure observation of the joint indicated that the decarburized band was mainly changed with upsetting process. Width of HAZ was also related to the upsetting conditions rather than the flashing conditions. Generally maximum hardness at HAZ was correlated with Ceq of steel and the empirical relationship was obtained to estimate the HAZ properties. Tensile elongation at the joint was usually decreased with increasing the initial clamping distance. Investigation of fracture surface after tensile and bending tests reveal that the origin of cracking at the joint was oxide inclusions composed of $SiO_2$, MnO, $Al_2O_3$, and/or FeO. The amount of inclusions was dependent on the composition ratio of Mn/Si in steel. If this ratio was above 4, the amount of inclusions was low and then the resistance to cracking at the joint was enough to maintain the joint performance. It was obtained that the flashing process influenced the conditions for the energy input to establish uniform or non­uniform molten layer, while the upsetting conditions influenced the joint strength. Heat input variable during flashing process was also discussed with the joint properties.

  • PDF