• 제목/요약/키워드: high tensile steel

검색결과 1,079건 처리시간 0.034초

가압열충격 사고시 클래드 하부균열 안전성 평가 방법에 관한 연구 (A Study on the Integrity Evaluation Method of Subclad Crack Under Pressurized Thermal Shock)

  • 김영진;김진수;구본걸;최재붕;박윤원
    • 대한기계학회논문집A
    • /
    • 제25권7호
    • /
    • pp.1139-1146
    • /
    • 2001
  • The reactor pressure vessel(RPV) is usually cladded with stainless steel to prevent corrosion and radiation embrittlement, and a number of subclad cracks have been found during an in-service-inspection. These subclad cracks should be assured for a safe operation under normal conditions and faulted conditions such as pressurized thermal shock(PTS). Currently available integrity assessment procedure for an RPV, ASME Code Sec. XI, are built on the basis of linear fracture mechanics (LEFM). In PTS condition, however, thermal stress and mechanical stress give rise to high tensile stress at the cladding and elastic-plastic behavior is expected in this area. Therfore, ASME Code Sec. XI is overly conservative in assessing the structural integrity under PTS condition. In this paper, the fracture parameter (stress intensity factor, K, and RT(sub)NDT) from elastic analysis using ASME Sec. XI and finite element method were validated against 3-D elastic-plastic finite element analyses. The difference between elastic and elastic-plastic analysis became significant with increasing crack depth. Therfore, it is recommended to perform elastic-plastic analysis for the accurate assessment of subclad cracks under TPS which causes plastic deformation at the cladding.

내사고성이 우수한 냉간 압연용 단강 Roll 재질 개발 (An Improved Alloy for Forged Rolls for Cold Rolling)

  • 박세용;이정훈;원종철;이우동;윤종호;박영철
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 제7회 압연 심포지엄
    • /
    • pp.65-71
    • /
    • 2009
  • The process of cold rolling is becoming more severe with the increase in the production of high tensile steel strip as a result of increased demand. Consequently, there is a need to develop work roll materials with better resistance to wear and roll failure. DOOSAN has developed an improved in-house 5%Cr alloy, New HSR1, with properties superior to the existing in- house 5%Cr alloy, Old HSR1. Test alloys were designed with controlled amounts of Si and Mn based on Old HSR1 and an optimum alloy was chosen based on thermal shock tests. A prototype work roll was manufactured with New HSR1, and properties of test specimens were evaluated. The results indicated that New HSR1 has better properties than Old HSR1. After application of New HSR1 work rolls, productivity increased due to advanced resistance to wear and roll failure.

  • PDF

EH40과 API2W강재의 극 후판재 다층 FCAW 버트 접합부 잔류응력해석 (Numerical Analysis of Welding Residual Stresses for Ultra-thick Plate of EH40 TM and API 2W Gr.50 Steel Joined by Flux Core Arc Welding)

  • 황세윤;이장현;양용식;이성제;김병종
    • Journal of Welding and Joining
    • /
    • 제28권3호
    • /
    • pp.65-72
    • /
    • 2010
  • Some structural members of large-scale marine vessels such as large-scale offshore structures and very large container ships are assembled by very thick plates of which thickness exceeds 60mm. Also, high-tensile steels have been selected to meet the required structural strength and fatigue strength. Generally, multi-pass welding method such as FCA(Flux-Core Arc) welding has been used to join the thick plates. Considering the welding residual stresses, fatigue strength of the welded joints of thick plates should be assured since the residual stress influences the fatigue strength. This paper presents a numerical procedure to investigate the residual stress of structure joined by multi-pass FCA welding so that it can be incorporated into the fatigue strength assessment considering the effect of welding residual stress. The residual stress distribution is also measured by X-Ray diffraction method. The residual stress obtained by the computational model also has been compared with that of experiment. The results of FEA are in very good agreement with the experimental measurements.

극후판 Box Column 코너이음부의 용접잔류응력 및 Groove형상 특성에 관한 연구 (A Study on the Characteristics of Welding Residual Stresses and Groove Sja[e pf Cprmer Joint in Box Column with Ultra Thick Plate)

  • 방한서;안규백;김종명;석한길;장웅성
    • Journal of Welding and Joining
    • /
    • 제17권1호
    • /
    • pp.97-103
    • /
    • 1999
  • Ships, structures on the ocean, bridges, and other structures tend to be large by the development of industry. These ultra thick plate were welded with large heat input, which causes welding stresses, deformation and buckling, so it has to be considered the weld design, safety, reliability. The welded residual stresses were produced and redistributed due to the effect of large heat input. The mechanical phenomenon has not been surely identified yet. In spite of the lack of the study on the box column, there are various types of steel frame such as I type, H type, + type and $\bigcirc$ type, used in high story building. In this study, we performed computer simulation with two dimensional heat conduction and plane deformation thermal elasto-plastic finite element computer program as changing the plate thickness to 100mm, 150mm and groove angle to $60^{\circ}C$, $45^{\circ}C$, $30^{\circ}C$ of corner joint in box column. And then, to identify mechanical phenomenon such as the phenomenon of thermal distribution, welding residual stresses and deformation and to decide optimum groove angle and welding condition. The main conclusion can be summarized as follows: 1) Since the groove angle has became cooling down rapidly due to its smaller value, the temperature slope was steeped somewhat. 2) The tensile stress within the welding direction stresses was somewhat decreased at the weld metal and HAZ, increasing of the groove angle. 3) The local stress concentration of the groove angle $60^{\circ}C$ was appeared smaller than groove angle $30^{\circ}$.

  • PDF

TMCP강을 적용한 해상용 풍력타워의 용접 공정에 따른 기계적 물성 평가 (Evaluation on Mechanical Properties with Welding Processes for Off Shore Wind Tower Application)

  • 지창욱;최철영;남대근;김형찬;장재호;김기혁;박영도
    • Journal of Welding and Joining
    • /
    • 제32권1호
    • /
    • pp.15-21
    • /
    • 2014
  • FCAW(Flux Cored Arc Welding), SAW(Submerged Arc Welding), EGW(Electro Gas Welding), and three-pole SAW are applicable in manufacturing the offshore wind tower. In this paper, mechanical properties of these welded-joints for TMCP steels were evaluated in all above welding processes. The tensile strength of welded-joints for all the welding methods satisfied the standard guideline (KS D 3515). No cracking on weldment was found after the bending test. Changes of weldedments hardness with welding processes were observed. In a weld HAZ (heat-affected zone), a softened HAZ-zone was formed with high heat input welding processes (SAW and EGW). However, the welded-joint fractures were found in the base metal for all cases and small decrease in welded-joint strength was caused by a softened zone. The multi-pole SAW welds exhibited similar mechanical properties comparing to the one with one-pole SAW process.

극한지용 고장력강의 평균 응력 삼축비 및 평균 정규 로드 파라메터를 고려한 3차원 파단 변형률 평면 개발: 제2부 파단 변형률 평면의 정식화 (Development of Three-Dimensional Fracture Strain Surface in Average Stress Triaxiaility and Average Normalized Lode Parameter Domain for Arctic High Tensile Steel: Part II Formulation of Fracture Strain Surface)

  • 정준모;박성주;김영훈
    • 한국해양공학회지
    • /
    • 제29권6호
    • /
    • pp.454-462
    • /
    • 2015
  • An extended study was conducted on the fracture criterion by Choung et al. (2011; 2012) and Choung and Nam (2013), and the results are presented in two parts. The theoretical background of the fracture and the results of new experimental studies were reported in Part I, and three-dimensional fracture surface formulations and verifications are reported in Part II. How the corrected true stress can be processed from the extrapolated true stress is first introduced. Numerical simulations using the corrected true stress were conducted for pure shear, shear-tension, and pure compression tests. The numerical results perfectly coincided with test results, except for the pure shear simulations, where volume locking appeared to prevent a load reduction. The average stress triaxialities, average normalized lode parameters, and equivalent plastic strain at fracture initiation were extracted from numerical simulations to formulate a new three-dimensional fracture strain surface. A series of extra tests with asymmetric notch specimens was performed to check the validity of the newly developed fracture strain surface. Then, a new user-subroutine was developed to calculate and transfer the two fracture parameters to commercial finite element code. Simulation results based on the user-subroutine were in good agreement with the test results.

프리스트레스트 개념을 적용한 긴장재가 구비된 압력용기 연구 (A Study on the Pressure Vessel containing tension material used the Prestressed Concept)

  • 임현욱
    • 융합정보논문지
    • /
    • 제7권5호
    • /
    • pp.103-109
    • /
    • 2017
  • 압력용기란 압력을 가진 유체를 수용하는 원통형 용기로써 실생활에는 프로판가스통과 부탄가스통 등이 있다. 한국가스안전공사의 자료에 따르면 국내 가스사고 발생 건수로는 연간 평균 프로판가스 관련 33건, 이동식부탄가스 관련 20.8건 등이 발생되었다. 이에 폭발방지를 위한 방안을 연구하고자 하였다. 기존 연구로는 폭발 한계점에서 안전출구를 통한 강제배출, 가스통의 강제격리, 고강도 강판 제조 등이 있으며, 본 논문에서는 철근콘크리트의 인장응력을 상쇄할 수 있도록 미리 압축응력을 준 프리스트레스트 개념을 사용하여 내압을 받는 원통내부의 응력을 감소시키고자 하였다. 즉, 압력용기 내부 양단에서 미리 인장한 긴장재를 설치하여 가스 중간밸브와 같은 역할을 하면서 응력을 상쇄하는 안전장치이다.

780 MPa급 TRIP강의 저항 점용접부 강도 및 파단에 미치는 Paint Baking의 영향 (Effect of Paint Baking on the Strength and Failure of Spot Welds for 780 TRIP Steels)

  • 손종우;남대근;김동철;박영도
    • Journal of Welding and Joining
    • /
    • 제28권2호
    • /
    • pp.66-73
    • /
    • 2010
  • Conventional fracture test of resistance spot weld had been performed without consideration of paint baking process in automobile manufacturing line. This study was aim to investigate the effect of paint baking on fracture mode and load carrying capacity in fracture test for resistance spot welded 780TRIP steels. With paint baking cycle after resistance spot welds, peel tests and microhardness were conducted on the as-welded and baked samples. Resistance spot welds in AHSS (Advanced High Strength Steels) are prone to display partial interfacial fractures during fracture test or vehicle crash. Baking cycle increased the load-carrying capacity of the resistance spot welded samples and improved the fracture appearance from partial to full button fracture for the L-type peel tests. Specially, the differences in fracture appearance are apparent when the nugget size of spot welds is small enough to produce the partial interfacial fracture. The comparison of macrohardness and microstructure between as-welded and baked samples showed that there are no large difference in change the fracture mode. However, the results of the instrumented indentation test suggested that fusion zone and HAZ of baked sample have less tensile and yield strength and proves that the tempering effects are applied and enhanced the resistance to fracture on welds with application of baking cycle.

Strain demand prediction of buried steel pipeline at strike-slip fault crossings: A surrogate model approach

  • Xie, Junyao;Zhang, Lu;Zheng, Qian;Liu, Xiaoben;Dubljevic, Stevan;Zhang, Hong
    • Earthquakes and Structures
    • /
    • 제20권1호
    • /
    • pp.109-122
    • /
    • 2021
  • Significant progress in the oil and gas industry advances the application of pipeline into an intelligent era, which poses rigorous requirements on pipeline safety, reliability, and maintainability, especially when crossing seismic zones. In general, strike-slip faults are prone to induce large deformation leading to local buckling and global rupture eventually. To evaluate the performance and safety of pipelines in this situation, numerical simulations are proved to be a relatively accurate and reliable technique based on the built-in physical models and advanced grid technology. However, the computational cost is prohibitive, so one has to wait for a long time to attain a calculation result for complex large-scale pipelines. In this manuscript, an efficient and accurate surrogate model based on machine learning is proposed for strain demand prediction of buried X80 pipelines subjected to strike-slip faults. Specifically, the support vector regression model serves as a surrogate model to learn the high-dimensional nonlinear relationship which maps multiple input variables, including pipe geometries, internal pressures, and strike-slip displacements, to output variables (namely tensile strains and compressive strains). The effectiveness and efficiency of the proposed method are validated by numerical studies considering different effects caused by structural sizes, internal pressure, and strike-slip movements.

SM490-TMC 후판(40 mm) 강재의 SAW 용접을 통한 기계적 특성 연구 (A Study on Mechanical Properties of SM490-TMC Back Plate(40 mm) Steel by SAW Welding)

  • 이성준
    • 한국산학기술학회논문지
    • /
    • 제22권3호
    • /
    • pp.88-93
    • /
    • 2021
  • 선박의 건조과정이나 압력용기의 몸체 부분을 용접할 경우 많이 사용되는 SAW(Submerged Arc Welding)는, 용접 부위에 분말 형태의 용제(Flux)를 일정 두께로 살포하고 그 속에 전극 와이어를 연속적으로 공급하여 용접이 이루어지는 방법으로 용접 시 발생되는 아크열이 외부로 노출되지 않는 특징이 있으며, 잠호용접으로 불리기도 한다. 또한 1,500~3,000A의 전류까지 통전 할 수 있는 고전류 용접이 가능하며 아크효율이 95% 이상, 미세한 금속 산화물 입자인 Welding Fume 발생량이 적고 아크광선이 외부로 노출되지 않아 청정한 작업이 가능하며 용입이 깊고 결함이 잘 발생하지 않아 용접 이음부의 신뢰도가 높다. 본 연구에서는 SM490C-TMC 후판을 서브머지드 아크용접(SAW)을 이용하여 이종 용접한 후 용접부의 기계적 특성을 인장, 경도, 매크로, 자분탐상 검사 결과를 분석하여 다음과 같은 결론을 도출하였다. 굽힘 시험 결과 시료에서 표면의 터짐 현장이 발생하지 않았고 기타 결점의 유무를 확인할 수 없었으며, 이는 용접 이후 소성변형 과정에서도 충분한 인성을 발휘하고 있는 것으로 나타났으며, 1F 용접 방법이 굽힘 성능에 문제가 없는 것으로 판단되었다.