• Title/Summary/Keyword: high temperatures

Search Result 5,012, Processing Time 0.031 seconds

Characteristics of High Water Temperature Occurrence in Coastal and Inland Bays of Korea during the Summers of 2018-2021 (2018년~2021년 여름철 우리나라 연안 고수온 현상)

  • Lee, Joon-Soo;Kwon, Mi-Ok;Ahn, Ji-Suk;Park, Myung-Hee;Song, Ji-Yeong;Han, In-Seong;Jung, Rae Hong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.5
    • /
    • pp.753-763
    • /
    • 2022
  • In coastal and inland bays, where most of Korea's aquaculture is located, massive aquaculture damage occurs every year due to frequent anomalous high water temperatures. The interannual fluctuations of water temperature in July over the past four years (2018-2021) were the second largest since 1990 (after the period of 1994-1997) due to anomalous high temperatures, rainy seasons, and typhoons. Through analysis of heat flux and heat balance in areas of concern for high water temperatures (i.e., Cheonsu Bay, Gamak Bay, Guryongpo), the occurrence of high water temperatures in Cheonsu Bay and Gamak Bay in the summer seasons was confirmed to derive mainly from heat inflow through the sea surface from the air. Based on estimations of the average ocean heat transport rate in July for the four-year period of 2018-2021, Cheonsu Bay and Gamak Bay accounted for 13.5% and 62.3% outflow of the net heat flux, respectively. However, the ocean heat transport rate in Guryongpo Hajeong differed significantly from -174.5% to 132.5% of the net heat flux by year depending on the occurrence of cold water mass.

HIGH TEMPERATURE OXIDATION OF NB-CONTAINING ZR ALLOY CLADDING IN LOCA CONDITIONS

  • Chuto, Toshinori;Nagase, Fumihisa;Fuketa, Toyoshi
    • Nuclear Engineering and Technology
    • /
    • v.41 no.2
    • /
    • pp.163-170
    • /
    • 2009
  • In order to evaluate high-temperature oxidation behavior of the advanced alloy cladding under LOCA conditions, isothermal oxidation tests in steam were performed with cladding specimens prepared from high burnup PWR fuel rods that were irradiated up to 79 MWd/kg. Cladding materials were $M5^{(R)}$ and $ZIRLO^{TM}$, which are Nb-containing alloys. Ring-shaped specimens were isothermally oxidized in flowing steam at temperatures from 1173 to 1473 K for the duration between 120 and 4000s. Oxidation rates were evaluated from measured oxide layer thickness and weight gain. A protective effect of the preformed corrosion layer is seen for the shorter time range at the lower temperatures. The influence of pre-hydriding is not significant for the examined range. Alloy composition change generally has small influence on oxidation in the examined temperature range, though $M5^{(R)}$ shows an obviously smaller oxidation constant at 1273 K. Consequently, the oxidation rates of the high burnup $M5^{(R)}$ and $ZIRLO^{TM}$ cladding are comparable or lower than that of unirradiated Zircaloy-4 cladding.

Evaluation on Creep properties of Reduced Activation Ferritic Steel(RAFs) for Nuclear Fusion Reactor (핵융합로용 저방사화 철강재료(RAFs)의 크리프 특성평가)

  • Kong, Yu-Sik;Yoon, Han-Ki;Kim, Dong-Hyen;Park, Yi-Hyen;Nahm, Seung-Hoon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.146-151
    • /
    • 2003
  • Reduced Activation Ferritic/Martenstic (RAFs) are leading candidates for structural materials of D-T fusion reactor. One of The RAFs, JLF-1 (9Cr-2W-V, Ta) has been developed and proved to have good resistance against high-fluency neutrino irradiation and good phase stability. Recently, in order to clarify the strengthening mechanical at high temperature, a new scheme to improve high temperature mechanical properties is desired. Therefore, the creep properties and creep life prediction by Larson-Miller Parameter method for JLF-1 to be used for fusion reactor materials or other high temperature components were presented at the elevated temperatures of $500^{\circ}C$, $550^{\circ}C$, $600^{\circ}C$, $650^{\circ}C$ and $704^{\circ}C$. It was confirmed experimentally and quantitatively that a creep life predictive e벼ation at such various high temperatures was well derived by LMP.

  • PDF

Properties of Fire Resistant Finishing Mortar Using Fly Ash and Glass Forming Light Weight Aggregate (플라이애시와 유리 발포 경량골재를 사용한 내화 마감모르타르의 특성)

  • Song, Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.4
    • /
    • pp.374-381
    • /
    • 2015
  • This study is investigating the fire resistant finishing materials composed of fly ash and glass forming light weight aggregate has the high temperature thermal stability. High temperatures such as a fire, cementitious materials beget dehydration and micro crack of cement matrix. From the test result, developed fire resistant finishing materials showed good stability in high temperatures. These high temperature stability is caused by the ceramic binding and low thermal conductivity of glass forming light weight aggregate. Also, alkali activation reaction of fly ash and meta kaolin not showing the decomposition of calcium hydrates. Thus, this result indicates that it is possible to fire resistant finishing light weight mortars.

High temperature resistance of self-compacting lightweight mortar incorporating expanded perlite and pumice

  • Karatas, Mehmet;Balun, Bilal;Benli, Ahmet
    • Computers and Concrete
    • /
    • v.19 no.2
    • /
    • pp.121-126
    • /
    • 2017
  • This paper presents the effect of aggregate type on high temperature resistance of self-compacting mortars (SCM) produced with normal and lightweight aggregates like expanded perlite and pumice. Silica fume (SF) and fly ash (FA) were used as mineral additives. Totally 13 different mixtures were designed according to the aggregate rates. Mini slump flow, mini V-funnel and viscometer tests were carried out on the fresh mortar. On the other hand, bulk density, porosity, water absorption and high temperature tests were made on the hardened SCM. After being heated to temperatures of 300, 600 and $900^{\circ}C$, respectively, the tensile strength in bending and compressive strength of mortars determined. As a result of the experiments, the increase in the use of lightweight aggregate increased total water absorption and porosity of mortars. It is observed that, the increment in the usage of lightweight aggregate decreased tensile strength in bending and compressive strengths of mortar specimens exposed to high temperatures but the usage of up to 10% expanded perlite in mortar increased the compressive strength of specimens exposed to $300^{\circ}C$.

A study on the high temperature properties of CoNiCrAlY coating fabricated by HVOF and LPPS process (LPPS용사법과 HVOF 용사법으로 제조된 CoNiCrAlY 코팅의 고온물성에 관한 연구)

  • 강현욱;권현옥;송요승
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.2
    • /
    • pp.161-168
    • /
    • 2001
  • A Thermal Barrier Coating (TBC) can play an important role in protecting parts from harmful environments at high temperatures such as oxidation, corrosion, and wear in order to improve the efficiency of aircraft engines by lowering the surface temperature of the turbine blade. The TBC can increase the life span of the product and improve the operating properties. Therefore, in this study the mechanical and thermal properties of the TBC such as oxidation, fatigue and shock at high temperatures were evaluated. A samples of a bond coat (CoNiCrAlY) produced by the High Velocity Oxygen Fuel (HVOF) and Low Pressure Plasma Spray (LPPS) method were used. The thickness of the HVOF coating layer was approximately $450\mu\textrm{m}$ to 500$\mu\textrm{m}$ and the hardness number of the coating layer was between 350Hv and 400Hv. The thickness of the LPPS coating was about 350$\mu\textrm{m}$ to 400$\mu\textrm{m}$ and the hardness number of the coating was about 370Hv to 420Hv. The X-ray diffraction analysis showed that CoNiCrAlY coating layer of the HVOF and LPPS was composed of the $\beta$and ${\gamma}$phase. After the high temperature oxidation test, the oxide scale with about l0$\mu\textrm{m}$ to 20$\mu\textrm{m}$ thickness appeared at the coating surface on the Al-depleted zone was observed under the oxide scale layer.

  • PDF

A Fluid inclusion study of the Sannae granite and the associated Sannae W-Mo deposit, Southeastern Kyongsang Basin (경상분지 남동부의 산내화강암과 산내 W-MO 광상에 관한 유체포유물 연구)

  • 양경희;이준동
    • The Journal of the Petrological Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.46-55
    • /
    • 1999
  • Fluid inclusions in granite and hydrothermal quartz indicate that three fluids have affected the Sannae granite. The earliest fluid is represented by three-phase aqueous fluid inclusions with high salinity (38 to 46 wt.% NaCl equiv.). It was exsolves from a crystallizing melt and trapped at a relatively high-pressure condition. The secong fluid is represented by two-phase aqueous fluid inclusion with low entectic temperatures (< $-40^{\circ}C$). low- to moderate salinity (3 to 24.0 wt.% NaCl equiv.) and high homogenization temperatures$ ($309^{\circ}C$$473^{\circ}C$)($. This fluid was trapped at higher pressures than 300-500 bars and precipitated molybdenite and wolframite in quartz veins. It was probably generted by fluid-host rock interactions since they show a wide range of salinity within a narrow range of homogenization temperatures. The final fluid is represented by an aquenous fluid boiling that separated into high-salinity (34-38 wt.% NaCl equiv.) and low-salinity fluid (0 to 8.7 wt.%) at $303-376^{\circ}C$ and 50-150 bars. These boiling fluids precipitated euhedral quartz in miarolitic cavities. The compositions of the final fluid was rather complex in the $H_2$O-NaCl-KCI-$FeCl_2$ system. The Sannae granite was a locus for repeated fluid events including magmatic fluids during the final stage of crystallization, the convection of hydrothermal fluids causing a fluid ascending, fluid boiling, and the local W-Mo mineralization and formation of miarolitic cavities due to thermal, tectonic and compositional properties of the felsic granite.

  • PDF

Effect of Sintering Atmosphere and Carbon Addition on Sintered Density of M3/2 Grade High Speed Steel Powder (M3/2계 고속도 공구강 분말의 소결분위기와 탄소첨가가 소결밀도에 미치는 영향)

  • Ahn, Jin-Hwan;Heo, Jong-Seo;Joo, Dong-Won;Jung, Eun;Sung, Jang-Hyun
    • Journal of Powder Materials
    • /
    • v.5 no.4
    • /
    • pp.265-272
    • /
    • 1998
  • For the purpose of investigating the effect of sintering atmosphere and carbon addition on sintered density and microstructural characteristics, the M3/2 grade high speed steel powders with the addition of carbon are sintered in vacuum and $20%H_2/79%N_2/l%CH_4$ gas atmosphere. With the addition of 0 wt%C, 0.45wt%C and 1.15 wt%C the optimum sintering temperatures decrease down to $1260^{\circ}C$, $1210^{\circ}C$ and $1150^{\circ}C$ respectively for the vacuum sintered specimen, and also decrease down to $1130^{\circ}C$, $1120^{\circ}C$ and $1115^{\circ}C$ for the gas sintered specimen. The threshold temperatures for full densification decrease steeply with increasing carbon content of the sintered specimen, while this temperatures are slowly decreased at high carbon content. The vacuum sintered specimen shows the primary carbides of MC and $M_6C$ type at the optimum sintering temperature, and eutectic carbides of $M_2C$ and Fe-Cr type are produced in the oversintered specimen. The gas sintered specimen exhibits M6C and Fe-Cr type primary carbides at the optimum sintering temperature. The eutectic carbides of $M_6C$ and Fe-Cr type and MX type carbonitride are shown for the oversintered specimen in the gas atmosphere. The hardness of gas sintered specimen shows high value of 830-860 Hv due to the increment of carbide precipitation.

  • PDF

Milk Protein Production and Plasma 3-Methylhistidine Concentration in Lactating Holstein Cows Exposed to High Ambient Temperatures

  • Kamiya, Mitsuru;Kamiya, Yuko;Tanaka, Masahito;Shioya, Shigeru
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.8
    • /
    • pp.1159-1163
    • /
    • 2006
  • This experiment was performed to examine the influences of high ambient temperature on milk production, nutrient digestibility, energy and protein sufficiency ratio, and plasma metabolites concentration in lactating cows. In a $2{\times}2$ crossover design, four multiparous lactating Holstein cows were maintained in a chamber under treatment of constant moderate ($18^{\circ}C$) ambient temperature (MT) or high ($28^{\circ}C$) ambient temperatures (HT). The DMI and milk protein yield were significantly lower in HT (p<0.05). The milk yield, milk lactose yield, and milk SNF yield tended to be lower in HT (p<0.10). No statistical differences for 4% fat-corrected milk and milk fat yield were observed. Rectal temperatures were significantly higher in HT than MT (p<0.05). The apparent DM, OM, ether extract, CF, and ash digestibility did not differ between treatments. On the other hand, the apparent CP digestibility was increased significantly (p<0.05) and nitrogen free extract tended to increase (p<0.10) in HT. The sufficiency ratio of ME and DCP intake for each requirement tended to be lower in HT than in MT (p<0.10). Concentrations of total protein (TP), albumin, and urea nitrogen in plasma did not differ between treatments. Plasma 3-methylhistidine (3MH) concentration as a marker of myofibrillar protein degradation tended to be higher in HT (p<0.15). In conclusion, high ambient temperature was associated with a lower energy and protein sufficiency ratio, and decreased milk protein production, even though the body protein mobilization tended to be higher.

A Study on the high Temperature Properties of the Graded Thermal Barrier Coatings by APS and PAS (APS법으로 제조된 열장벽 피막과 PAS법으로 제조된 열장벽 성형체의 고온 물성에 관한 연구)

  • 강현욱;권현옥;한주철;송요승;홍상희;허성강;김선화
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.2
    • /
    • pp.144-156
    • /
    • 1999
  • Thermal Barrier Coating with Functional Gradient Materials (FGM-TBC) can play an important role to protect the parts from harmful environments in high temperatures such as oxidation, corrosion, and wear and to improve the efficiency of aircraft engine by lowering the surface temperature on turbine blade. FGM-TBC can increase the life spans of product and improve the operating properties. Therfore, in this study the evaluations of mechanical and thermal properties of FGM-TBC such as fatigue, oxidation and wear-resistance at high temperatures have been conducted. The samples of both the TBC with 2, 3, 5 layers (YSZ/NiCrAlY) to be produced by Air Plasma Spray method (APS) and the bulk TBC with 6 layers to be produced by Plasma Assisted Sintering method (PAS) were used. Furthermore, residual stress, bond strength, and thermal conductivity were evaluated. The average thickness of the APS was 500$\mu\textrm{m}$ to 600$\mu\textrm{m}$ and the average thickness of the PAS was 3mm. The hardness number of the top layer of APS was 750 Hv to 810Hv and that of PAS was 950 Hv to 1440Hv. The $ZrO_2$ coating layer of APS was composed of tetragonal structure after spraying as the result of XRD analysis. As shown in the results of the high temperature wear test, the 3 layer coating of APS had the best wear resistance at $800^{\circ}C$ and the 5 layer coating of APS had the best wear resistance at $600^{\circ}C$. But, these coatings had the tendency of the low-temperature softening at $300^{\circ}C$. The main mechanism of wear was the adhesive wear and the friction coefficient of coatings was increased as increasing the test temperatures. A s results of thermal conductivity test, the ${\Delta}T$ of the APS coating was increased as number of layer and the range of thermal conductivity of the PAS was $800^{\circ}C$ to $1000^{\circ}C$.

  • PDF