• Title/Summary/Keyword: high temperatures

Search Result 4,997, Processing Time 0.034 seconds

Taxonomic Variations of Bacterial and Fungal Communities depending on Fermentation Temperature in Traditional Korean Fermented Soybean Food, Doenjang

  • Eunhye Jo;Hyeyoung Lee;Younshil Song;Jaeho Cha
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.863-870
    • /
    • 2024
  • Meju, a fermented soybean brick, is a key component in soybean foods like doenjang and ganjang, harboring a variety of microorganisms, including bacteria and fungi. These microorganisms significantly contribute to the nutritional and sensory characteristics of doenjang and ganjang. Amplicon-based next-generation sequencing was applied to investigate how the microbial communities of meju fermented at low and high temperatures differ and how this variation affects the microbial communities of doenjang, a subsequently fermented soybean food. Our metagenomic data showed distinct patterns depending on the fermentation temperature. The microbial abundance in the bacterial community was increased under both temperatures during the fermentation of meju and doenjang. Weissella was the most abundant genus before the fermentation of meju, however, it was replaced by Bacillus at high temperature-fermented meju and lactic acid bacteria such as Weissella and Latilactobacillus at low temperature-fermented meju. Leuconostoc, Logiolactobacillus, and Tetragenococcus gradually took over the dominant role during the fermentation process of doenjang, replacing the previous dominant microorganisms. Mucor was dominant in the fungal community before and after meju fermentation, whereas Debaryomyces was dominant under both temperatures during doenjang fermentation. The dominant fungal genus of doenjang was not affected regardless of the fermentation temperature of meju. Strong correlations were shown for specific bacteria and fungi linked to specific fermentation temperatures. This study helps our understanding of meju fermentation process at different fermentation temperatures and highlights different bacteria and fungi associated with specific fermentation periods which may influence the nutritional and organoleptic properties of the final fermented soybean foods doenjang.

Changes of physiochemical properties of LOX-3 null rice lines stored at different storage temperatures and periods

  • Shin, Woon-Chul;Kim, Jeong-Ju;Park, Hyun-Su;Jeong, Jong-Min;Baek, Man-Kee;Nam, Jeong-Kwon;Park, Seul-Gi;Kim, Choon-Song;Cho, Young-Chan;Kim, Bo-Kyeong
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.69-69
    • /
    • 2017
  • Due to the lack in storage facility, considerable amount of rice is stocked in the open air, which causes increased stale flavor and deteriorates palatability and merchantable quality. Lipoxygenase-3(LOX-3) is involved in the production of volatile constituents in stored rice, and the development of stale flavor is delayed in LOX-3 null rice. LOX activity in the rice grain is localized in bran fraction and the tropical Japonica cultivar 'Dawdam' was reported that the absence of LOX-3 is inherited as a simple recessive trait. Also, it was reported that the peroxidation of unsaturated fatty acids occurs at lower levels in the 'Dawdam' bran fraction during storage than in rice varieties with LOX-3. This study was conducted to develop LOX-3 null rice lines using 'Dawdam' and investigate changes of physicochemical properties of the lines stored at different storage temperatures and periods. So we analyzed texture, toyo glossiness value, germination rate and lipoxygenase activity of 15 LOX-3 null rice lines on the condition of which rough rice had been stored at different temperatures (high temperature condition at $35^{\circ}C$ and low temperature condition at $15^{\circ}C$ for 4months. Hardness and stickiness of the lines tendered to be increased when it was stored at high temperature and adhesiveness, springiness, cohesiveness and chewiness was not considerably different according to storage temperatures and periods. The germination rate of HR29062-B-98-2-1-B among LOX-3 null rice lines was higher than another lines, 99.3, 94.0% after 4months stored at low temperature and high temperature, respectively. The lipoxygenase activity was 3,304, 1,601unit/mg protein after 4months stored at low temperature and high temperatures, respectively. So, it is thought that this line will be useful to breed rice varieties with high storability after tested on agricultural traits.

  • PDF

Study on Deterioration of Domestic Edible Oils Upon Heating at High Temperatures (시판식용유(市販食用油)의 고온연속가열(高溫連續加熱)에 따르는 경시적(經時的) 변화(變化)에 관(關)한 연구(硏究))

  • Oh, Young-Bok;Kim, Kwang-Ho
    • Journal of Nutrition and Health
    • /
    • v.11 no.3
    • /
    • pp.25-30
    • /
    • 1978
  • A study was planned to evaluate the influence of continual heating at $150{\pm}5^{\circ}C$ and $170{\pm}5^{\circ}C$ respectively upon edible oils for frying the several food. Two kinds of domestic edible oils (Sample A and B) were collected by random sampling from market and in order to estimate deterioration degrees at both temperatures previously mentioned, thiobarbituric acid (TBA) value, acid value (AV), peroxide value (POV) and carbonyl value (CV) were measured at intervals due to its optical density. Those values were examined and compared according to the temperatures and times, and it was concluded as follows: 1) TBA value was rapidly increased until 24 hours in both temperatures and after 1 day its value have shown a slower increase as compared with initial rapid reaction. 2) Acid value and peroxide value of both oils (A & B) used for frying were increased continuously during heating and the changes in these values were dependent on the thermal oxidation, and moreover at low temperature $(150{\pm}5^{\circ}C)$ these values were found to be increased more readily than at high temperature $(170{\pm}5^{\circ}C)$. 3) Carbonyl value of both sample A and B show almost the same increasing rate at either $150{\pm}5^{\circ}C$ or $170{\pm}5^{\circ}C$ in proportion to the heating time. 4) It was found that there were differences between the chemical changes caused by heating sample A and B at high and low temperature.

  • PDF

Evaluation of Growth, Carcass, Immune Response and Stress Parameters in Naked Neck Chicken and Their Normal Siblings under Tropical Winter and Summer Temperatures

  • Rajkumar, U.;Reddy, M.R.;Rao, S.V. Rama;Radhika, K.;Shanmugam, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.4
    • /
    • pp.509-516
    • /
    • 2011
  • The performance of naked neck and normal chicken was evaluated with respect to growth, carcass, immune, biochemical and stress parameters under winter and summer seasons to assess the suitability of naked neck birds under high temperatures in the global scenario of climate change. The growth performance was significantly ($p{\leq}0.05$) higher in naked neck chicken in the summer season. The dressing percentage was significantly ($p{\leq}0.05$) higher in naked neck birds in both winter and summer season because of reduced plumage. The thigh, giblet and feather proportion significantly ($p{\leq}0.05$) varied between naked neck and normal chickens in summer season. The humeral immune response to sheep red blood cells (SRBC), Newcastle disease vaccine (NDV) and cutaneous basophil hypersensitivity (CBH) did not show any significant differences among the chicken groups. The protein and cholesterol concentration observed was within the normal ranges. The total cholesterol levels in plasma were significantly ($p{\leq}0.05$) lower in naked neck birds in both the seasons. H:L ratio was significantly ($p{\leq}0.05$) lower in summer season indicating less stress in naked neck chicken. Basophil and eosinophil concentration was significantly ($p{\leq}0.05$) higher in normal chicken in summer. The lipid peroxidation was higher in full feathered birds under summer stress. The enzyme glutathione reductase (GR) levels were significantly higher during the summer and varied significantly ($p{\leq}0.05$) between the normal and naked neck chicken in both seasons. The results indicated that the naked neck birds performed significantly better at high ambient temperatures with respect to growth, carcass and biochemical parameters. It was concluded that the ability of the naked neck chicken to adapt to high temperatures foresees a viable option for the biological mitigation of climate change.

Mineral Uptake and Soluble Carbohydrates of Tomato Plants as Affected by Air Temperatures and Mineral Treatment Levels

  • Sung, Jwakyung;Yun, Hejin;Cho, Minji;Lee, Yejin;Chun, Hyenchung;Ha, Sangkeun;Sonn, Yeonkyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.4
    • /
    • pp.305-311
    • /
    • 2015
  • Both low and high temperatures affect plant growth and development at whole plant level, tissue and even cell level through a variety of metabolic changes. Temperature stress is one of frequently occurring problems in greenhouse crops in summer and winter seasons due to the wide-spread year-round cultivation. In the present study, we investigated the extent of the inhibition of growth, macro-element uptake and soluble carbohydrate production, and the effect of extra-supply of minerals as a means of the recovery from temperature damage. Tomato plants were grown five different growth temperatures (15/8, 20/13, 28/21, 33/23 and $36/26^{\circ}C$), and extra-supply of minerals was composed of 1.5- and 2.0-fold stronger than the standard nutrition (1/2 strength of Hoagland's solution). Temperature stress significantly adversely affected tomato growth and mineral uptake, whereas soluble carbohydrate accumulation represented temperature-dependent response, more accumulation at low temperature and more consumption at high temperature. The soluble sugars in leaves and stems were mostly declined with the supply of extra-minerals at low and optimal temperatures, whereas remained unchanged at high temperature. The starch levels also remained unchanged or slightly decreased.

Creep Behavior of High-Strength Concrete with Nylon Fibers at Elevated Temperatures (고온을 받은 나일론 섬유 보강 고강도 콘크리트의 크리프 거동)

  • Kim, Young-Sun;Lee, Tae-Gyu;Kim, Woo-Jae;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.627-636
    • /
    • 2011
  • Recently, to prevent explosive spalling of high-strength concrete (HSC) members, the usage of nylon fiber instead of polypropylene fiber has increased. Past experimental studies have been conducted to examine the spalling and mechanical properties of HSC with nylon fibers when exposed to elevated temperature. However, the previous studies on HSC with nylon fibers subjected to high temperatures were performed only on the properties such as spalling, compressive strength, and elastic modulus rather than investigations on to the behaviors such as thermal strain, total strain, steady state creep, and transient creep. Therefore, in this study thermal strain, total strain, steady state creep, and transient creep of HSC mixed with nylon fibers with water to binder ratio of 0.30 to 0.15 were tested. The experimental results showed that nylon fibers did not affect the performance of HSC with nylon fibers at high temperatures. However, HSC with nylon fibers generated a larger transient creep strain than that of HSC without fibers and normal strength concrete.

Ultrathin Titania Coating for High-temperature Stable $SiO_2$/Pt Nanocatalysts

  • Reddy, A. Satyanarayana;Kim, S.;Jeong, H.Y.;Jin, S.;Qadir, K.;Jung, K.;Jung, C.H.;Yun, J.Y.;Cheon, J.Y.;Joo, S.H.;Terasaki, O.;Park, Jeong-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.217-217
    • /
    • 2011
  • Recently, demand for thermally stable metal nanoparticles suitable for chemical reactions at high temperatures has increased to the point to require a solution to nanoparticle coalescence. Thermal stability of metal nanoparticles can be achieved by adopting core-shell models and encapsulating supported metal nanoparticles with mesoporous oxides [1,2]. However, to understand the role of metal-support interactions on catalytic activity and for surface analysis of complex structures, we developed a novel catalyst design by coating an ultra-thin layer of titania on Pt supported silica ($SiO_2/Pt@TiO_2$). This structure provides higher metal dispersion (~52% Pt/silica), high thermal stability (~600$^{\circ}C$) and maximization of the interaction between Pt and titania. The high thermal stability of $SiO_2/Pt@TiO_2$ enabled the investigation of CO oxidation studies at high temperatures, including ignition behavior, which is otherwise not possible on bare Pt nanoparticles due to sintering [3]. It was found that this hybrid catalyst exhibited a lower activation energy for CO oxidation because of the metal-support interaction. The concept of an ultra-thin active metal oxide coating on supported nanoparticles opens-up new avenues for synthesis of various hybrid nanocatalysts with combinations of different metals and oxides to investigate important model reactions at high-temperatures and in industrial reactions.

  • PDF

Measurement of Material Properties of Composites under High Temperature using Fiber Bragg Grating Sensors (광섬유 브래그 격자 센서를 이용한 고온용 복합재료의 물성 측정)

  • 강동훈;박상욱;김수현;홍창선;김천곤
    • Composites Research
    • /
    • v.16 no.6
    • /
    • pp.41-47
    • /
    • 2003
  • Composites are widely used for aircraft, satellite and other structures due to its good mechanical and thermal characteristics such as low coefficient of thermal expansion(CTE), heat-resistance, high specific stiffness and specific strength. In order to use composites under condition of high temperature, however, material properties of composites at high temperatures must be measured and verified. In this paper, material properties of T700/Epoxy were measured through tension tests of composite specimens with an embedded FBG sensor in the thermal chamber at the temperatures of RT, $100^{\circ}$, $200^{\circ}$, $300^{\circ}$, $300^{\circ}$. Through the pre-test of an embedded optical fiber, we confirmed the embedding effects of an optical fiber on material properties of the composites. Two kinds of specimens of which stacking sequences are [0/{0}/0]$_{T}$. and [$90_2$/{0}/$90_2$]. were fabricated. From the experimental results, material property changes of composites were successfully shown according to temperatures and we confirmed that fiber Bragg grating sensor is very appropriate to strain measurement of composites under high temperature.

Formation of Fe Aluminide Multilayered Sheet by Self-Propagating High-Temperature Synthesis and Diffusion Annealing (고온자전반응합성과 확산 열처리를 이용한 FeAl계 금속간화합물 복합판재의 제조)

  • Kim, Yeon-Wook;Yun, Young-Mok
    • Korean Journal of Materials Research
    • /
    • v.18 no.3
    • /
    • pp.153-158
    • /
    • 2008
  • Fe-aluminides have the potential to replace many types of stainless steels that are currently used in structural applications. Once commercialized, it is expected that they will be twice as strong as stainless steels with higher corrosion resistance at high temperatures, while their average production cost will be approximately 10% of that of stainless steels. Self-propagating, high-temperature Synthesis (SHS) has been used to produce intermetallic and ceramic compounds from reactions between elemental constituents. The driving force for the SHS is the high thermodynamic stability during the formation of the intermetallic compound. Therefore, the advantages of the SHS method include a higher purity of the products, low energy requirements and the relative simplicity of the process. In this work, a Fe-aluminide intermetallic compound was formed from high-purity elemental Fe and Al foils via a SHS reaction in a hot press. The formation of iron aluminides at the interface between the Fe and Al foil was observed to be controlled by the temperature, pressure and heating rate. Particularly, the heating rate plays the most important role in the formation of the intermetallic compound during the SHS reaction. According to a DSC analysis, a SHS reaction appeared at two different temperatures below and above the metaling point of Al. It was also observed that the SHS reaction temperatures increased as the heating rate increased. A fully dense, well-bonded intermetallic composite sheet with a thickness of $700\;{\mu}m$ was formed by a heat treatment at $665^{\circ}C$ for 15 hours after a SHS reaction of alternatively layered 10 Fe and 9 Al foils. The phases and microstructures of the intermetallic composite sheets were confirmed by EPMA and XRD analyses.

Quality Characteristics of Omija (Schizandra chinesis Baillon) Extracts Under Various Conditions for Beverage Production (음료 제조를 위한 오미자 추출물의 추출 조건에 따른 품질 특성)

  • Min, Sung Hee
    • Journal of the Korean Society of Food Culture
    • /
    • v.28 no.3
    • /
    • pp.320-327
    • /
    • 2013
  • The quality characteristics of Omija (Schizandra chinesis Baillon) extracts under various extraction temperatures and times were examined. The pH level of the extracts ranged from 3.35-3.47. The sugar and solid content of the samples significantly increased with increasing extraction temperatures and times (p<0.01). In contrast, the lightness of the extracts decreased with increasing extraction temperatures and times (p<0.001). In a palatability test, extracts boiled at $80^{\circ}C$ for 30 minutes scored high in terms of color, flavor, turbidity, sourness, and overall acceptability. Hydroxy radical scavenging activity and polyphenol content of the extracts significantly increased with increasing extraction temperatures and times (p<0.01). Furthermore, direct correlations between hydroxy radical scavenging activity and polyphenol content (or flavonoid content) were established through simple regression (r>0.9) for different extraction temperatures and times. From these results, extracts boiled at $80^{\circ}C$ for 120 minutes is the best to product omija beverage considering functionality and sensory evaluation as well.