• Title/Summary/Keyword: high temperature superconductivity

Search Result 592, Processing Time 0.025 seconds

Temperature Characteristic of Rotor of HTS Synchronous Machine cooled by Solid Nitrogen (고체질소 냉각 고온초전토 동기기용 회전자의 온도특성)

  • Jo, Young-Sik;Hong, Jung-Pyo;Lee, Ju;Sim, Ki-Deck;Sohn, Myoung-Hwan;Kwon, Young-Kil;Ryu, Kang-Sik
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2001.02a
    • /
    • pp.95-97
    • /
    • 2001
  • This paper deals with cryogen, which is used solid nitrogen to keep the operating temperature of High Temperature Superconducting (HTS) synchronous machine. To make the solid nitrogen of liquid nitrogen, liquid helium (LHe) passes into and cools the heat exchanger to its own temperature. Two types of heat exchangers are designed and manufactured to make the solid nitrogen, and temperature characteristics of those compare with each other. The rotor cooled by latent heat of solid nitrogen and it is kept under 40K during 2 hours and 30 minutes without LHe.

  • PDF

Simulated winding temperature distribution of HTS transformer cooled by sub-cooled liquid nitrogen

  • Han, J.H.;Choi, K.D.;Kim, T.Y.;Chang, T.;Kim, W.S.;Kim, S.H.;Hahn, S.Y.;Kim, S.R.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.4
    • /
    • pp.51-54
    • /
    • 2004
  • A 1 MV A single phase high temperature superconducting (HTS) transformer was manufactured. In order to reduce AC loss generated in the HTS winding, winding was concentrically arranged. Operation temperature is set at 65K to increase the critical current and reduce the amount of HTS tape usage and the volume. The cryogenic system which consists of main cryostat with the windings and secondary cryostat with 2 GM coolers and cryopump on top and heat exchanger inside is also designed and the cooling performance is simulated with Fluent. Temperature distribution of the windings is investigated whether the windings are kept under designed operation temperature.

Calculation of Heat Loads and Temperature Distribution for the HTS Termination Current Lead (HTS 단말 전류도입선 형상에 대한 온도분포 및 열부하 계산)

  • 조승연;사정우;김도형;김동락;김승현;양형석
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.36-39
    • /
    • 2003
  • HTS (High Temperature Superconducting) cable termination current lead has been designed based on simplified boundary conditions such as fixed temperature at both end and sdiabatic/convection in the side wall. However, in the real situation the current lead is enclosed with insulators and exposed to insulation oil and L$N_2$. Therefore it is necessary to consider them for the proper current lead design. In this paper, several important design parameters were chosen and their effect on the temperature distribution and heat loads on the current lead has been investigated. It was found that current lead has to be 2 stage to reach the minimum temperature requirement of insulation oil and insulator is required to reduce the cooling capacity of cryogenic system.

  • PDF

The Development of Manufacturing Technology of Aluminum Cryostat for Superconducting Cable (초전도 케이블용 Aluminum Cryostat 제조기술 개발)

  • 김수연;이창호;김도운;장현만;김동욱
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.243-245
    • /
    • 2003
  • The method to fabricate the cryostat of superconducting cable is extrusion type which is used Aluminum ingot under high temperature such as 45$0^{\circ}C$ and the cryostat is formed above cable core and MLI layer. In this case, it is expected to occur thermal injury in cable core and MLI layer, so it is necessary to study to prevent thermal injury. So in this paper, using simulation on radiation and convection which are accompany with fabricating cryostat, it is suggested to reduce the thermal injury. By measuring simulation temperature and real temperature, it is possible to check the temperature on cable core and MLI layer and using these temperature, it is possible to predict whether thermal injury is occurred or not on cable core and MLI layer.

  • PDF

Transient behavior of cryogenic thermosiphon working with R14 and nitrogen mixture (R14와 질소 혼합유체를 사용하는 극저온 열사이펀의 과도상태 거동)

  • Lee, Ji-Sung;Jeong, Sang-Kwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.1
    • /
    • pp.66-70
    • /
    • 2010
  • The operational temperature range of thermosiphon is generally limited from the critical point to the triple point of the working fluid to maintain two-phase state. Thermosiphon with mixed working fluid has a potential to widen the operational temperature range. In this study, the physical behavior of mixed working fluid during the transient operation of thermosiphon was analyzed with temperature-mole fraction diagram. The condenser and the evaporator temperature variations were explained by the dew line and the bubble line of the mixture. It is encouraging that the thermosiphon operation commences early with larger fraction of high boiling point component, but the temperature gap between the condenser and the evaporator due to the separation of two components has a negative effect on the officient cool down process.

Static Properties of Superconductor Journal Bearing Substator for Superconductor Flywheel Energy Storage System (초전도 저널베어링 Substator의 특성평가)

  • Park, B.J.;Jung, S.Y.;Lee, J.P.;Park, B.C.;Jeong, N.H.;Sung, T.H.;Han, Y.H.
    • Progress in Superconductivity
    • /
    • v.10 no.1
    • /
    • pp.55-59
    • /
    • 2008
  • A Superconductor Flywheel Energy Storage System(SFES) mainly consists of a pair of non-contacting High Temperature Superconductor(HTS) bearings that provide very low frictional losses, a composite flywheel with high energy storage density. The HTS bearings, which offer dynamic stability without active control, are the key technology that distinguishes the SFES from other flywheel energy storage devices, and great effort is being put into developing this technology. The Superconductor Journal Bearing(SJB) mainly consists of HTS bulks and a stator, which holds the HTS bulks and also acts as a cold head. Static properties of HTS bearings provide data to solve problems which may occur easily in a running system. Since stiffness to counter vibration is the main parameter in designing an HTS bearing system, we investigate SJB magnetic force through static properties between the Permanent Magnet(PM) and HTS. We measure stiffness in static condition and the results are used to determine the optimal number of HTS bulks for a 100kWh SFES.

  • PDF

Superconducting Transitions of $(Pb,V)Sr_2(Ca,Er)Cu_2O_z$ Quenched from High Temperatures

  • Lee, Ho-Keun
    • Progress in Superconductivity
    • /
    • v.1 no.1
    • /
    • pp.9-13
    • /
    • 1999
  • The influence of quenching temperature and annealing time on superconducting characteristics has been investigated for a $(Pb_{0.6}V_{0.4})Sr_2(Ca_{0.65}Er_{0.35})Cu_2O_z$ compound. From the resistivity measurements for samples annealed at $400^{\circ}C$ to $860^{\circ}C$ in oxygen and subsequently quenched, it is observed that $T_c$(zero) of the sample decreases with the increase of annealing temperature up to $600^{\circ}C$ and increases again beyond $700^{\circ}C$. Annealings of the sample at $860^{\circ}C$ show that $T_c$(zero) goes through a maximum of 62K with the increase of the annealing time. It is also found that $T_c$(zero) of the sample quenched from high temperature decreases when the sample is subjected to low temperature annealing below. $600^{\circ}C$ in oxygen. The experimental results indicate that the as-prepared samples contain excessive oxygen and removal of this excessive oxygen in as-prepared samples is a key factor in controlling the superconducting properties of the samples and are discussed in connection with thermal gravimetric measurements.

  • PDF

Study on fabricated RF coil using high-temperature superconductor tape and matching circuit for low field MRI system (고온초전도 선재와 정합회로를 이용한 RF coil 제작에 대한 기초연구)

  • Kim, D.H.;Ko, R.K.;Kang, B.M.;Ha, D.W.;Sohn, M.H.;Mun, C.W.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.1
    • /
    • pp.44-47
    • /
    • 2012
  • The substantial improvement of the signal-to-noise ratio (SNR) can be achieved with small-size samples or low-field MRI system by high-temperature superconducting(HTS) RF coil. The typical HTS RF coil made of HTS thin film is expensive and is limited the coil geometry to planar surface coil. In this study, commercial Bi-2223 HTS tapes was used as RF coil for a 0.35T permanent MRI system. It has advantages of both much lower cost and easier fabrication over HTS thin film coil. SNR gain of the image obtained from the HTS RF coil over a conventional Cu RF coil at room temperature was about 2.4-fold and 1.9-fold using the spin echo pulse sequence and gradient echo pulse sequence respectively.

Insulation of Winding and Current Lead of the High-Tc Superconducting Magnets for DC Reactor Type SFCL (DC 리액터형 고온초전도한류기용 고온초전도자석의 권선 및 전류리드의 절연)

  • 양성은;배덕권;전우용;김영식;김상현;고태국
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.226-229
    • /
    • 2003
  • Following the successful development of practical high temperature superconducting (HTS) wires, there has been renewed activity in the development of superconducting power equipments. HTS equipments must be operated in the coolant, such as liquid nitrogen (L$N_2$) or cooled by cooler, such as GM-cryocooler to maintain the temperature below critical temperature. In this paper, dielectric strength of some insulating materials, such as epoxy, teflon, and glass fiber reinforced plastic (GFRP) in L$N_2$was measured. Surface breakdown voltage of GFRP which is basic property in design of HTS solenoid coil was measured. Epoxy is a goof insulating material but it is fragile at cryogenic temperature. The multi-layer insulating method of current lead is suggested to compensate this fragile property. It consists of teflon tape layer and epoxy layer fixed with texture. Based on these measurements, the 6.6㎸ class HTS magnet for DC reactor type high-T$_{c}$ superconducting fault current limiter (SFCL) was successfully fabricated and tested.d.

  • PDF

Development of a PLD heater for continuous deposition and growth of superconducting layer

  • Jeongtae Kim;Insung Park;Gwantae Kim;Taekyu Kim;Hongsoo Ha
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.2
    • /
    • pp.14-18
    • /
    • 2023
  • Superconducting layers deposited on the metal substrate using the pulsed laser deposition process (PLD) play a crucial role in exploring new applications of superconducting wires and enhancing the performance of superconducting devices. In order to improve the superconducting property and increase the throughput of superconducting wire fabricated by pulsed laser deposition, high temperature heating device is needed that provides high temperature stability and strong durability in high oxygen partial pressure environments while minimizing performance degradation caused by surface contamination. In this study, new heating device have been developed for PLD process that deposit and growth the superconducting material continuously on substrate using reel-to-reel transportation apparatus. New heating device is designed and fabricated using iron-chromium-aluminum wire and alumina tube as a heating element and sheath materials, respectively. Heating temperature of the heater was reached over 850 ℃ under 700 mTorr of oxygen partial pressure and is kept for 5 hours. The experimental results confirm the effectiveness of the developed heating device system in maintaining a stable and consistent temperature in PLD. These research findings make significant contributions to the exploration of new applications for superconducting materials and the enhancement of superconducting device performance.